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ABSTRACT  

This paper is concerned with introducing and studying the M-space by using the mixed degree systems which are 

the core concept in this paper. The necessary and sufficient condition for the equivalence of two reflexive M-spaces is 

super imposed. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure 

operators and M-subspace are introduced. From an M-space, a unique supratopological space is introduced. Furthermore, 

the m-continuous (m-open and m-closed) functions are defined and the fundamental theorem of the m-continuity is 

provided. Finally, the m-homeomorphism is defined and some of its properties are investigated.  
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1. INTRODUCTION 

For a long time, many individuals believed that abstract topological structures have limited application in the 

generalization of real line and complex plane or some connections to Algebra and other branches of mathematics. And it 

seems that there is a big gap between these structures and real life applications. We noticed that in some situations, the 

concept of relation is used to get topologies that are used in important applications such as computing topologies [12], 

recombination spaces [5, 6, and 13] and information granulation which are used in biological sciences and some other 

fields of applications. 

Topological graph theory [1, 2, 4, 9, and 10] is a branch of mathematics, whose concepts exists not only in almost 

all branches of mathematics, but also in many real life applications. We believe that topological graph structure will be an 

important base for narrow the gap between topology and its applications. 

A directed graph or digraph [11] is pair G = (V(G), E(G)) where V(G) is a non-empty set (called vertex set) and 

E(G) of ordered pairs of elements of V(G) (called edge set). An edge of the from (v, v) is called a loop. If v∈V(G), the out-

degree of v is |{u∈V(G) : (v, u)∈E(G)}| and in-degree of v is |{u∈V(G) : (u, v)∈E(G)}|. A digraph is reflexive if (v, v)∈E(G) 

for each v∈V(G), symmetric if  (v, u)∈E(G) implies (u, v) ∈E(G), transitive if (v, u)∈E(G) and (u, w)∈E(G) implies (v, 

w)∈E(G), tolerance if it is reflexive and symmetric, dominance if it is reflexive and transitive, equivalence if it is reflexive 

and symmetric and transitive, serial if for all v∈V(G) there exists u∈V(G) such that (v, u)∈E(G).A sub graph of a graph G is 

a graph each of whose vertices belong to V(G) and each of whose edges belong to E(G). An empty graph [3] if the vertices 

set and edge set is empty. A subfamily  of X is said to supratopology [8] on X if (i) X, ∈ (ii) if Ai∈∀i∈j then ⋃Ai∈. 

(X,) is called supratopology space. Let G = (V (G), E (G)) be a digraph, the digraph inverseGˉ¹ [7] is specified by the 

same set of vertices V (G) and a set of edge E (G) ˉ¹ = {(u, v): (v, u) ∈ E (G)}. 
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2. MIXED DEGREE SYSTEMS AND M-SPACES 

In this section, we introduce and investigate the notions of mixed degree systems, M-spaces and m-derived graphs 

which are essential for our present study. 

Definition 2.1. 

Let G= (V (G), E (G)) be digraph and a vertex v∈ V (G). 

(a) The out-degree set of v is denoted by vD and defined by: vD={u∈V(G): (v, u)∈E(G)} and 

(b) The in-degree set of v is denoted by Dv and defined by: Dv= {u∈V (G): (u, v) ∈E (G)}. 

Definition 2.2. 

Let G=(V(G),E(G))be a digraph, then the out-degree system(resp. in-degree system)of a vertex v∈V(G) is denoted 

by ODS(v) (resp.IDS(v))and defined by: 

ODS (v) = {vD} (resp. IDS (v) = {Dv}). 

Example 2.3. 

Let G=(V(G),E(G)) be a digraph such that 

V(G)={v₁,v₂,v₃,v₄,v₅},E(G)={(v₁,v₁),(v₁,v₂),(v₂,v₃),(v₂,v₅),(v₄,v₃),(v₄,v₄),(v₅,v₂),(v₅,v₄),(v₅,v₅)}. 

 

Figure 2.1: Graph G given in Example 2.3 

 Then we have OD(v₁)={v₁, v₂},OD(v₂)={v₃, v₅},OD(v₃)=,OD(v₄)={v₃, v₄},OD(v₅)={v₂, v₄, 

v₅}.ODS(v₁)={{v₁, v₂}},ODS(v₂)={{v₃, v₅}},ODS(v₃)={},ODS(v₄)={{v₃, v₄}} and ODS(v₅)={{v₂, v₄, v₅}}.   

 Also, we have 

ID(v₁)={v₁},ID(v₂)={v₁,v₅},ID(v₃)={v₂,v₄},ID(v₄)={v₄,v₅},ID(v₅)={v₂,v₅}.IDS(v₁)={{v₁}},IDS(v₂)={{v₁,v₅}},IDS(v₃)=

{{v₂,v₄}},IDS(v₄)={{v₄,v₅}} and IDS(v₅)={{v₂, v₅}}. 

Definition 2.4. 

Let G=(V(G),E(G)) be a digraph. The mixed degree system of a vertex v∈V(G) is denoted by MDS(v) and defined 

by MDS(v)={ODS(v),IDS(v)}. 

Definition 2.5. 
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Let G= (V (G), E (G)) be a digraph the mixed degree of a vertex v∈V (G) is denoted by MD(v) such that 

MD(v)∈MDS(v). 

Example2.6. 

According to Example (2.3), the mixed degree systems are given by  

MDS(v₁)={{v₁, v₂},{v₁}},MDS(v₂)={{v₃, v₅},{v₁, v₅}},MDS(v₃)={,{v₂, v₄}},MDS(v₄)={{v₃, v₄}, {v₄, v₅}} and 

MDS(v₅)={{v₂, v₄, v₅},{v₂, v₅}}. 

Definition 2.7. 

Let G=(V(G),E(G)) be a digraph and suppose that m:V(G)→ P(P(V(G))) is a mapping which assigns for each v in 

V(G) its mixed degree system in P(P(V(G))).The pair (G,m) is called an M-space. 

Example 2.8. 

Let G=(V(G),E(G)) be a digraph such that 

V(G)={v₁,v₂,v₃,v₄,v₅},E(G)={(v₁,v₂),(v₁,v₄),(v₂,v₂),(v₄,v₅),(v₄,v₅),(v₄,v₃),(v₅,v₅)}. 

 
Figure 2.2: Graph G Given in Example 2.8 

Thus we get  

m(v₁)={{v₂, v₄},},m(v₂)={{v₂},{v₁, v₂}},m(v₃)={,{v₄}},m(v₄)={{v₃, v₅},{v₁}} andm(v₅)={{v₅},{v₄, 

v₅}}.There for (G,m) is an M-space. 

An M-space is defined by the mapping m and a given graph G for which there are defined two different mappings 

 ₁and  ₂given two different corresponding M-spaces. 

It might see that the concept of M-spaces without additional assumptions on graph G is two general to embrace 

many properties. It will be seen however that, with suitable definitions, a whole concept of M-spaces can be developed and 

certain of its results find an application in generalized rough set theory. 

Definition 2.9: 

Let (G, m) be an M-space. A vertex v in V (G) is called a limit vertex of a graph H⊆G if every mixed degree of v 

contains at least one vertex of H different from v. The set of all limit vertices of a graph H⊆G is called the m-derived graph 

of H and is denoted by [V (H)]` , that is, 

[V(H)]` ={v∈V(G);∀MD(v),MD(v) ⋂(V(H)⎼ {v}) ≠}. 

Example 2.10. 

In Example (2.8),if H⊆G,H=(V(H),E(H)):V(H)={v₁, v₂, v₃},E(H)={(v₁, v₂),(v₂, v₂)}                                                   
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Figure 2.3: Sub graph H of graph G Given in Example 2.10 

 Then [V (H)]` .={v₄}. 

Suppose that m:P(V(G))→P(V(G)) is am aping which assigns for every graph H⊆G a set m(V(H))⊆V(G) such 

that m(V(H))=[V(H)]` .Obviously, by Definition (2.9), the mapping m satisfies the following properties: 

(a) m()=, 

(b) If H⊆K, then m(V(H))⊆m(V(K))for all H,K⊆G and 

(c) If v∈m (V (H)), then v∈ (V (H) ⎼ {v}). 

Definition 2.11. 

Two M-spaces (G₁, ₁)and (G₂, ₂) such that V(G₁)=V(G₂) are said to be equivalent if the           m-derived graph 

of each sub graph in (G₁, ₁)equal to the m-derived graph of the same sub graph in(G₂,
2
).In other words,the two M-

spaces (G₁, ₁)and (G₂, ₂)are equivalent if and only if [V(H)] ₁
` =[V(H)] ₂

` for all V(H)⊆V(G₁). 

Example 2.12. 

Let G₁=(V(G₁), E(G₁)),G₂=(V(G₂),E(G₂)):V(G₁)=V(G₂)={v₁, v₂, v₃}and  

E(G₁)={(v₁, v₁),(v₂, v₁),(v₃, v₂),(v₃, v₃)} and E(G₂)={(v₁, v₂),(v₂, v₃),(v₃, v₃)}. 

      
Figure 2.4: Graphs G₁ and G₂ given in Example 2.12 

Then  ₁ Induced by G₁ is given by: 

 ₁(v₁)={{v₁},{v₁,v₂}}, ₁(v₂)={{v₁},{v₃}} and  ₁(v₃)={{v₂,v₃}, {v₃}}. 

Also, ₂ induced by G₂is given by: 

 ₂(v₁)={{v₂},}}, ₂(v₂)={{v₃},{v₁}} and ₂(v₃)={{v₃},{v₂,v₃}}. 

The two M-space (G₁, ₁) and (G₂, ₂) are equivalent. 

Example 2.13:  

Let:G₁=(V(G₁),E(G₁)),G₂=(V(G₂),E(G₂)):V(G₁)=V(G₂)={v₁,v₂,v₃},E(G₁)={(v₁,v₁),(v₁,v₂),(v₂,v₁),(v₂,v₃),(v₃,v₁)},E(G₂)={(v₁

,v₂),(v₁,v₃),(v₂,v₂),(v₂,v₃),(v₃,v₁)}. 
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Figure 2.5: Graphs G₁ and G₂ Given in Example 2.13. 

Then  ₁ Induced by G₁is given by: 

 ₁(v₁)={{v₁,v₂},V(G₁)}, ₁(v₂)={{v₁,v₃},{v₁}} and ₁(v₃)={{v₁,v₃},{v₂,v₅}}. 

Also  ₂ induced by G₂ is given by: 

 ₂(v₁)={{v₂,v₃},{v₃}}, ₂(v₂)={{v₂,v₃},{v₁,v₂}} and ₂(v₃)={{v₁},{v₁,v₂}}. 

Let H⊆G₁,G₂; V(H)={v₁,v₃}, then[V(H)] ₁
` ={v₂} and[V(H)] ₂

` ={v₁,v₂,v₃}. Accordingly, there exists 

H⊆G₁,G₂,namely V(H)={v₁,v₃} such that [V(H)] ₁
` ≠ [V(H)] ₂

` and hence the two M-spaces (G₁, ₁) and (G₂, ₂) are not 

equivalent. 

Definition 2.14. 

An M-space (G,m)is called reflexive (resp.serial, symmetric, transitive, and equivalence)if m is induced by a 

reflexive (resp.serial, symmetric, transitive, and equivalence) graph. 

Example 2.15. 

Let G=(V(G),E(G)):V(G) ={v₁,v₂,v₃,v₄}, E(G)={(v₁,v₁),(v₁,v₂),(v₂,v₂),(v₂,v₃),(v₃,v₃),(v₃,v₁),(v₃,v₄),(v₄,v₄)}. 

 

Figure 2.6: Graph G given in Example 2.15 

Hence m is defined by m(v₁) = {{v₁, v₂}, {v₁, v₃}}, m(v₂) = {{v₂, v₃}, {v₁, v₂}}, m(v₃) = {{v₁, v₃,v₄}, {v₂, v₃}} 

andm(v₄) = {{v₄}, {v₃, v₄}}. 

Clearly, (G, m) is reflexive M-space. 

Example 2.16. 

Let G=(V(G),E(G)):V(G)={v₁,v₂,v₃,v₄},E(G)={(v₁,v₁),(v₁,v₂),(v₂,v₄),(v₃,v₃),(v₃,v₂),(v₄,v₃)}. 

 



56                                                                                                                                                                                             Yousif Yaqoub Yousif & Sara Saad Obaid 

 
Impact Factor (JCC): 2.0346                                                                                                                     NAAS Rating 3.19 

 
Figure 2.7: Graph G given in Example 2.16 

Hence m is defined by m(v₁) = {{v₁, v₂}, {v₁, v₄}}, m(v₂) = {{v₄}, {v₁, v₃}}, m(v₃) = {{v₂, v₃}, {v₃}} andm(v₄) 

= {{v₄}, {v₂}}.Clearly, (G, m) is serialM-space. 

Example 2.17. 

Let G=(V(G),E(G)):V(G)={v₁,v₂,v₃,v₄},E(G)={(v₁,v₁),(v₁,v₂),(v₂,v₁),(v₂,v₃),(v₃,v₂),(v₃,v₃),(v₃,v₄),(v₄,v₃)}. 

 
Figure 2.8: Graph G given in Example 2.17 

Hence m is defined by m(v₁) = {{v₁, v₂}}, m(v₂) = {{v₁, v₃}}, m(v₃) = {{v₂, v₃,v₄}} andm(v₄) = 

{{v₃}}.Clearly, (G, m) is symmetric M-space. 

Example 2.18. 

Let G=(V(G),E(G)):V(G)={v₁,v₂,v₃,v₄},E(G)={(v₁,v₁),(v₁,v₂),(v₂,v₁),(v₂,v₂),(v₃,v₁),(v₃,v₂),(v₃,v₄),(v₄,v₁),(v₄,v₂)}. 

  
Figure 2.9: Graph G given in Example 2.18 

Hence m is defined by m(v₁) = {{v₁, v₂}, {v₁, v₂, v₃, v₄}}, m(v₂) = {{v₁, v₂}, {v₁, v₂, v₃, v₄}}, m(v₃) = {{v₁, v₂,v₄},} 

andm(v₄) = {{v₁, v₂}, {v₃}}.Clearly, (G, m) is transitiveM-space. 

Example 2.19. 

Let G=(V(G),E(G)):V(G)={v₁,v₂,v₃,v₄},E(G)={(v₁,v₁),(v₁,v₂),(v₁,v₃),(v₂,v₁),(v₂,v₂),(v₂,v₃),(v₃,v₁),(v₃,v₂),(v₃,v₃),(v₄,v₄)}. 

 
Figure 2.10: Graph G given in Example 2.19 
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Hence m is defined by m(v₁) = {{v₁, v₂, v₃}}, m(v₂) = {{v₁, v₂, v₃}, {v₁, v₂}}, m(v₃) = {{v₁, v₃}, {v₁v₂, v₃}} 

andm(v₄) = {{v₄}}.Clearly, (G, m) is equivalence M-space. 

Lemma 2.20. 

In an reflexive M-space each vertex contained in each one of its mixed degrees. 

Proof: Let (G,m) be a reflexive M-space. So m is induced by a reflexive graph G and hence v∈OD (v) for all 

v∈V (G). Since G is reflexive, then Gˉ¹is also reflexive and so v ∈ID (v) for all v∈V (G).Consequently v∈MD (v) for all 

v∈V (G). 

Theorem 2.21. Two reflexive M-spaces (G1, ₁) and (G2, ₂) such that V(G₁)=V(G2)=V(G) are equivalent if and only if for 

each mixed degree M₁D(v) of a vertex v∈V(G) there exists M2D(v) which is contained in M1D(v) and vice versa. 

Proof. Let(G₁, ₁)and (G2, ₂) be two equivalent reflexive M-spaces and v∈V(G).Suppose that M₁D(v) is mixed degree of v 

and since(G₁, ₁)is reflexive M-space, then by Lemma(2.19),we have v∈M₁D(v). Putting V(H)=V(G)⎼M₁D(v),hence M₁D(v)∩V(H)= 

and so v∉V(H) and v∉[V(H)]` . Since (G₁, ₁) and (G₂, ₂) are equivalent then the m-derived graphs of H are the same in both M-

spaces, i.e.[V(H)] ₁
` =[V(H)]`  and hence v∈ [V(H)]` . Accordingly, there exists M2D(v) such that M₂D(v)∩[V(H)⎼{v}]= and since 

v∉V(H) then M₂D(v)∩V(H)=,therefore M₂D(v)⊆V(G) ⎼V(H)=M₁D(v),i.e.M₂D(v)⊆M₁D(v).Similarly, because of the symmetry of the 

condition, for every mixed degree M₂D(v) there exists a mixed degree M₁D(v) which is contained in M₂D(v).Consequently, the condition 

of the theorem is necessary. 

Conversely, suppose that the condition of the theorem is satisfied and let V(H)⊆V(G).If v∉[V(H)] ₁
` , then there is M₁D(v) such 

that M₁D(v)∩[V(H)⎼{v}]=.But, by the condition of theorem, there exists M₂D(v)such that M₂D(v)⊆M₁D(v), and so 

M₂D(v)∩[V(H)⎼{v}]= which implies v∉[V(H)] ₂
` ,and hence [V(H)] ₂

` ⊆[V(H)] ₁
` . Similarly, we can show that [V(H)] ₁

` ⊆[V(H)] ₂
` . As 

a consequence we see that [V(H)] ₁
` =[V(H)] ₂

`  for all V(H)⊆V(G) and therefore the two M-space are equivalent. 

The following example illustrates the idea of Theorem (2.20), 

Example 2.22. 

LetG₁=(V(G₁),E(G₁)):V(G₁)={v₁,v₂,v₃},E(G₁)={(v₁,v₁),(v₁,v₂),(v₂,v₂),(v₃,v₂),(v₃,v₃)} and G₂=(V(G₂),E(G₂)): 

V(G₂)={v₁,v₂,v₃},E(G₂)={(v₁,v₁),(v₂,v₁),(v₂,v₂),(v₃,v₁)}.  

       

Figure 2.11: Graphs G₁ and G₂ given in Example 2.22 

Then  induced by G₁ is given by (v₁)= {{v₁, v₂}, {v₁}},  (v₂) = {{v₂}, {v₁, v₂, v₃}} and (v₃) = {{v₂, 

v₃}, {v₃}}. 

Also,   induced by G₂ is given by (v₁) = {{v₁}, {v₁, v₂}}, (v₂) = {{v₁, v₂}, {v₂}} and (v₃) = {{v₁}, }. 
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Obviously, the two reflexive M-spaces (G₁, ) and (G₂, ) are equivalent since the condition of 

Theorem(2.21), is satisfied. 

3. M-Closed Graph and m-Closure Operators 

In this section, we introduce the notions of m-closed graphs and m-closure operators and we study some of their 

properties. 

Definition 3.1. 

In an M-space (G, m), a graph which contains all its limit vertices is called m-closed. The family Fm of all m-

closed graphs of an M-space is defined by: 

Fm={V(H)⊆V(G);[V(H)]` ⊆V(H)}. 

Theorem 3.2. 

In an M-space, the intersection of any family of m-closed graphs is m-closed. 

Proof.Let(G,m) be an M-space such that K∈G and V(K)=⋂i (V(Hi);i ∈I, be the intersection of the m-closed graphsHi⊆G,i 

∈I.Hence K⊆Hi for all i ∈I which implies [V(K)]` ⊆[V(Hi)]`  for all i ∈I.But [V(Hi)]` ⊆V(Hi) for all i ∈I since Hiis m-closed  and so 

[V(K)]` ⊆V(Hi)for all i ∈I thus, [V(K)]` ⊆⋂i(V(Hi))=V(K) and hence K is m-closed. 

If follows from definition of an m-closed graph that the empty graph is m-closed (` =⊆) and the whole M-space G is also 

m-closed ( ` ⊆G).Consequently,for every H⊆G there exists at least onem-closed graph,namely G,containing H. 

Remark 3.3.The union of two m-closed graphs contained in an M-space need not be m-closed as shown in the following 

example. 

Example 3.4. 

Let G=(V(G),E(G)):V(G)={v₁,v₂,v₃,v₄,v₅}, E(G)={(v₁,v₁),(v₁,v₅),(v₂,v₃),(v₂,v₄),(v₃,v₁),(v₃,v₃),(v₅,v₂),(v₅,v₄),(v₅,v₅)} 

 
Figure 3.1: Graph G given in Example 3.4 

m(v₁) = {{v₁, v₅}, {v₁, v₃}},m(v₂) = {{v₃, v₄}, {v₅}}, m(v₃) = {{v₁, v₃}, {v₂, v₃}},m(v₄) = {, {v₂, v₅}}, m(v₅) 

= {{v₂, v₄, v₅}, {v₁, v₅}}. 

Accordingly, the family Fmof all m-closed graphs of this M-space is given by 

Fm={V(G),,{v₁},{v₂},{v₃},{v₄},{v₅},{v₁,v₃},{v₁,v₅},{v₂,v₃},{v₂,v₄},{v₂,v₅},{v₃,v₄},{v₂,v₃,v₄},{v₂,v₄,v₅},{v₁,v

₂,v₃,v₅}}. 
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Obviously,thegraphsH=(V(H),E(H)):V(H)={v₁},E(H)={(v₁,v₁)}andK=(V(K), E(K)):V(K)={v₂},E(K)=are m-

closed but their unionH⋃K=(V(H⋃K),E(H⋃K)):V(H⋃K)={v₁,v₂}, E(H⋃K)={(v₁,v₁)} is not m-closed. 

Theorem 3.5.If (G,m) is an M-space and H⊆G is m-closed graph, then every graph contained in H and containing 

[V(H)]` is m-closed  

Proof.Let (G,m) be an M-space and H,K⊆G such that H is m-closed graph 

and[V(H)]` ⊆V(K)⊆V(H).SinceV(K)⊆V(H)then[V(K)]` ⊆[V(H)]` andso [V(K)]` ⊆V(K)and therefor K is m-closed. 

Corollary 3.6.The m-derived graph of an m-closed graph is m-closed. 

Proof: The proof is an immediate consequence of the above theorem. 

Definition 3.7.Let H be a sub graph of an M-space (G,m). The intersection of all m-closed graphs containing His 

called the m-closure of H and is denoted by Clm (V (H)), i.e. 

Clm (V (H)) =∩ {V (K) ∈Fm; V (H) ⊆V (K)}. 

The operator Clm: P (V (G)) P (V (G)) is called m-closure operator. 

By Theorem (3.2), Clm (V (H)) is m-closed graph for all H⊆G. Moreover, it is the smallest m-closed graph 

containing V(H).H is m-closed if and only if V(H)=Clm(V(H)) and in particular, Clm(Clm(V(H)))=Clm(V(H)). 

Example 3.8. 

In Example (3.4), let H⊆G, H = (V(H), E(H)): V(H)={v₁,v₂,v₃},E(H)={(v₁,v₁),(v₂,v₃),(v₃,v₃),(v₃,v₁)} 

 
Figure 3.2: Sub Graph H of a Graph G given in Example 3.8 

So, Clm(V(H))={v₁,v₂,v₃,v₅}. 

Proposition 3.9.If (G,m) is an M-space andH⊆G, then V(H)⋃ [V(H)]` ⊆Clm(V(H)) 

Proof.Let (G,m) be an M-space and H⊆G. Since V(H)⊆Clm(V(H))then[V(H)]` ⊆[Clm(V(H))]` . But 

[Clm(V(H))]` ⊆Clm(V(H))because Clm(V(H)) is m-closed and so [V(H)]` ⊆Clm(V(H)). Accordingly V(H)⋃ 

[V(H)]` ⊆Clm(V(H)). 

Remark 3.10.If (G,m)is an M-space H⊆G,then the relationV(H)⋃ [V(H)]` =Clm(V(H)) is not necessarily true. 

The next example is employed as a counter example to show the above remark. 

Example 3.11. 

Let G=(V(G),E(G)):V(G)={v₁,v₂,v₃,v₄,v₅}, E(G)={(v₁,v₁),(v₂,v₃),(v₂,v₄),(v₃,v₄),(v₃,v₅),(v₄,v₁),(v₄,v₄),(v₅,v₂),(v₅,v₅)} 
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Figure 3.3: Graph G given in Example 3.11 

So, mis given by m(v₁) = {{v₁}, {v₁, v₄}},m(v₂) = {{v₃, v₄}, {v₅}}, m(v₃) = {{v₄, v₅}, {v₂}},m(v₄) = {{v₁, v₄}, 

{v₂, v₃, v₄}} andm(v₅) = {{v₂, v₅}, {v₃, v₅}}. Hence, we have  

Fm={V(G),,{v₁},{v₂},{v₃},{v₄},{v₅},{v₁,v₄},{v₁,v₅},{v₃,v₄},{v₁,v₃,v₄},{v₂,v₃,v₅},{v₂,v₃,v₄,v₅}}. 

Let H⊆G, H=(V(H),E(H)):V(H)={v₂,v₄},E(H)={(v₂,v₄),(v₄,v₄)}, then [V(H)]`  = {v₃} and Clm(V(H)) = {v₂, v₃, v₄, 

v₅}. Obviously, V(H)⋃ [V(H)]` Clm(V(H)) 

 

Figure 3.4: Sub graph H of a graph G given in Example 3.11 

Proposition 3.12: If (G,m) is an M-space, then the m-closure operator Clm: P(V(G))→ P(V(G)) possesses the 

following properties for all H, K⊆G: 

(a) Clm()=, 

(b) Clm(V(G))=V(G), 

(c) V(H)⊆Clm(V(H)), 

(d) If H⊆K then Clm(V(H)) ⊆Clm(V(K)), 

(e) Clm (Clm(V(H))=Clm(V(H)), 

(f) Clm(V(H) ⋂V(K))⊆Clm(V(H))⋂Clm(V(K)) and 

(g) Clm(V(H)⋃V(K))⊇Clm(V(H))⋃Clm(V(K)). 

Proof: Straightforward. 

Remark 3.13.Let (G,m)be an M-space, then the following proposition are not true in general for every H,K⊆G: 

(a) Clm(V(H)⋂V(K))=Clm(V(H))⋂Clm(V(K)) and 

(b) Clm(V(H)⋃V(K))=Clm(V(H))⋃Clm(V(K)). 

 The following example illustrates Remark (3.13), 

Example 3.14. 
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According to Example (3.11), we have  

(a) Let H=(V(H),E(H)):V(H)={v₂, v₄}, E(H)={(v₂, v₄),(v₄, v₄)}then Clm(V(H))={v₂, v₃, v₄, v₅}and K=(V(K), 

E(K)):V(K)={v₂, v₅}, E(K)={(v₅, v₂),(v₅, v₅)} then Clm(V(K))={v₂, v₃, v₅}. But, H⋂K = 

(V(H)⋂V(K),E(H)⋂E(K)): V(H)⋂V(K) = {v₂}, E(H)⋂E(K)=  such that Clm(H ⋂ K) =Clm(V(H) ⋂ V(K)) = {v₂} 

and so Clm(V(H) ⋂ V(K))Clm(V(H)) ⋂Clm(V(K)). 

(b) Let H=(V(H),E(H)):V(H)={v₄}, E(H)={(v₄, v₄)} then Clm(V(H))={v₄}and K=(V(K), E(K)): V(K)={v₅}, 

E(K)={(v₅, v₅)}then Clm(V(K))={v₅}. But, H⋃K = (V(H)⋃V(K),E(H)⋃E(K)): V(H)⋃V(K) = {v₄, v₅}, E(H)⋃E(K) 

= {(v₄, v₄), (v₅, v₅)} such that Clm(H ⋃ K) =Clm(V(H) ⋃ V(K)) = {v₂, v₃, v₄, v₅} and so Clm(V(H) ⋃ 

V(K))Clm(V(H)) ⋃Clm(V(K)). 

4. m-OPEN GRAPHS AND m-INTERIOR OPERATOR 

In this section we introduce the notions of m-open graphs, m-interior operators, m-boundary graphs and we study 

some of their properties. Also, the M-subspace is defined and some of its properties are investated. 

Definition 4.1: The complement of an m-closed graph with respect to the M-space (G,m) in which it is contained 

is called m-open graph. The family    of all m-open graphs is defined by 

m ={V(O)⊆V(G);V(O)=V(G) ⎼V(H) such that V(H)∈ Fm}. 

In an M-space (G,m),since the m-derived graph is uniquely defined it follows that the family Fm of all m-closed 

graphs of this M-space is also uniquely defined. Accordingly, the corresponding familym of all m-open graphs is also 

uniquely defined. As a consequence, the families of m-open graphs in two equivalents M-spaces are identical. 

Theorem 4.2: In an M-space, the union of any family of m-open graphs is m-open. 

Proof.Let(G,m) be an M-space such that H⊆GandV(H)=⋃i V(Hi) be the union of the m-open graphs Hi⊆G,i 

∈I.Hence V(G) ⎼V(H)=V(G)⎼⋃i V(Hi)=⋂i[V(G) ⎼V(Hi)].Putting V(Ki)=[V(G) ⎼V(Hi)] we have V(G) ⎼V(Hi)=⋂i V(Ki) 

where Ki, i ∈I,is m-closed graph. Hence byTheorem (3.2),V(G) ⎼V(Hi) is m-closed and therefore H is m-open. 

Remark 4.3: Obviously, the empty graph and the whole M-space G are m-open graphs. 

Remark 4.4.The intersection of two m-open graphs contained in an M-space is not necessarily m-open graph as 

shown in the next example. 

Example 4.5. 

According to Example (3.11).We have m = {V(G), ,{v₁}, {v₁, v₄}, {v₂, v₅}, {v₁, v₂,v₅}, {v₂, v₃, v₄}, {v₂, v₃, 

v₅}, {v₁, v₂, v₃, v₄}, {v₁, v₂, v₃, v₅}, {v₁, v₂, v₄, v₅}, {v₁, v₃, v₄, v₅}, {v₂, v₃, v₄, v₅}}. 

LetH=(V(H),E(H)):V(H)={v₂,v₅},E(H)={(v₅,v₂),(v₅,v₅)} is m-open andK=(V(K),E(K)):V(K)={v₂,v₃,v₄}, 

E(K)={(v₂,v₃),(v₂,v₄),(v₃,v₄),(v₄,v₄)}is m-open. 
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Figure 4.1: Sub Graphs H and K of a Graph G given in Example 4.5 

But H⋂K=(V(H⋂K),E(H⋂K)):V(H⋂K)={v₂},E(H⋂K)= is not m-open. 

Corollary 4.6: If (G,m) is an M-space, then the family m of all m-open graphs forms a supratopology on G. 

Proof: The proof is immediately follows from Theorem (4.2), and Remark (4.3), and Remark (4.4). 

Obviously, by Remark (4.4), the family m of all m-open graphs in an M-space (G, m) need not be a topology on 

G. 

Theorem 4.7: If (G,m) is an M-space and H⊆G, then H is m-open if and only if it contains at least one mixed 

degree of each of its vertices. 

Proof.Let (G,m) be an M-space and H be an m-open graph contained in G and v∈V(H). Suppose that for each 

mixed degree of v,MD(v),we have MD(v)⊈V(H), thus for each MD(v),MD(v)⋂[V(G) ⎼V(H)] ≠ which implies v∈[V(G) 

⎼V(H)]`  .But G ⎼H is m-closed since H ism-open and so [V(G) ⎼V(H)]` ⊆[V(G) ⎼V(H)]and hence v∈[V(G) ⎼V(H)]. 

Therefore v∉V(H) which contradicts with v∈V(H)and consequently if H⊆G is m-open and v∈V(H),then there exists at least 

one mixed degree of v which is contained in V(H). Conversely, let H contains at least one mixed degree of each of its 

vertices,i.e.for all v∈V(H) there exists MD(v) such that MD(v)⊆V(H). Let u∈[V(G) ⎼V(H)]`  then u∉V(H).For if u∈V(H) 

there would be a mixed degree of u,MD(u),such that MD(u)⊆V(H) and this would imply that MD(u)⋂[V(G) ⎼V(H)]= and 

thus u∉[V(G) ⎼V(H)]` which is impossible.Accordingly,u∈[V(G) ⎼V(H)]and so [V(G) ⎼V(H)]` ⊆[V(G) ⎼V(H)] which 

implies G⎼H is m-closed and hence H is m-open. 

Definition 4.8.Let (G,m)be an M-space and H⊆G, then the union of all m-open graphs  contained in H is called 

the m-interior of H and denoted by Int m(V(H)), i.e. 

Intm(V(H))=⋃{V(O)∈m ;V(O)⊆V(H)}. 

The operatorIntm:P(V(G))⟶P(V(G)) is called the m-interior operator. 

By Theorem (4.2), Intm (V (H)) is m-open graph for H⊆G. Furthermore, it is the largest m-open graph containing 

in H and Intm (V (H)) ⊆V (H) for all H⊆G. Consequently, H is m-open graph if and only if V (H) =Intm (V (H)) and in 

particular, Intm (Intm (V (H))) =Intm (V (H)). 

Example 4.9.According to Example (4.5), let H⊆G; H=(V(H),E(H)):V={v₁,v₃},E(H)={(v₁,v₁)} 

  
Figure 4.2: Sub Graph H of a Graph G given in Example 4.9 
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Then Intm(V(H))={v₁}. 

Proposition4.10.If(G,m)is an M-space,then the m-interior operatorIntm:P(V(G))⟶P(V(G)) satisfies the following 

properties for all H, K⊆G: 

(a) Intm()=, 

(b) Intm(V(G))=V(G), 

(c) Intm(V(H))⊆V(H), 

(d) If H⊆K then Intm(V(H))⊆Intm(V(K)), 

(e) Intm(Intm(V(H)))=Intm(V(H)), 

(f) Intm(V(H)⋂V(K))⊆Intm(V(H))⋂Intm(V(K)) and 

(g) Intm(V(H)⋃V(K))⊇Intm(V(H))⋃Intm(V(K)). 

Proof: Straight forward. 

Remark 4.11.Let (G,m) be an M-space, then the following properties are not true in general for every H, K⊆G: 

(a) Intm(V(H)⋂V(K))=Intm(V(H))⋂Intm(V(K)) and 

(b) Intm(V(H)⋃V(K))=Intm(V(H))⋃ Intm(V(K)). 

The following example is employed to show the above remark. 

Example 4.12: 

In Example (4.5), we obtain 

(a) LetH=(V(H),E(H)):V(H)={v₁,v₂,v₃,v₄},E(H)={(v₁,v₁),(v₂,v₄),(v₂,v₃),(v₃,v₄),(v₄,v₁),(v₄,v₄)} then 

Intm(V(H))={v₁,v₂,v₃,v₄}andK=(V(K),E(K)):V(K)={v₂,v₅},E(K)={(v₅,v₂),(v₅,v₅)}thenIntm(V(K))={v₂,v₅}.H ⋂K = 

(V(H⋂K), E(H⋂K)): V(H⋂K) = {v₂}. 

Intm(V(H⋂K)) = . 

So, Intm(V(H) ⋂ V(K)) Intm(V(H)) ⋂ Intm(V(K)). 

(b) LetH=(V(H),E(H)):V(H)={v₁,v₃},E(H)={(v₁,v₁)}thenIntm(V(H))={v₁}and 

K=(V(K),E(K)):V(K)={v₁,v₂,v₄},E(K)={(v₁,v₁),(v₂,v₄),(v₄,v₁),(v₄,v₄)}then Intm(V(K))={v₁,v₂,v₄}.H ⋃K = (V(H ⋃ K), E(H ⋃ 

K)): V(H ⋃K) = {v₁, v₂, v₃, v₄}. Intm(V(H⋃ K)) = {v₁, v₂, v₃, v₄} 

So, Intm (V (H) ⋃ V (K)) Intm (V (H)) ⋃ Intm (V (K)) 

Proposition 4.13.If (G,m)is an M-space and H⊆G, then 

(a) Intm(V(H))= V(G) ⎼[Clm(V(G)⎼V(H))] and 

(b) Clm (V (H)) = V (G) ⎼ [Intm (V (G) ⎼V (H))]. 

Proof: Obvious 

Definition 4.14.Let (G,m) be an M-space and H⊆G, then  
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Bdm(V(H))=Clm(V(H))⎼Intm(V(H)) is called the m-boundary of H and 

Extm(V(H))=V(G) ⎼Clm(V(H)) is called the m-exterior of H. 

Definition 4.15.Let (G,m) be an M-space, H⊆G and  


 ={V(H)⋂V(O) ; V(O)∈m }. 

The pair (H,
 ) is called an M-subspace of (G,m). 

Theorem 4.16.If H is a subgraph of the M-space (G,m),then
 ={V(H)⋂V(O):V(O)∈m} is a supratoplogy on H. 

Proof. SinceV(G) and  are two members ofm,then H=H⋂G is a member of 
  and =H⋂∈

 . Nowlet {Ki |i ∈I} be a 

subclass of
 ,then by Definition(4.15) for each i∈I there exists an m-open graphMisuch thatKi=H⋂Mi.Hence ⋃i Ki=⋃i (H⋂Mi)=H 

⋂(⋃i Mi).But,by Theorem(4.2),⋃iMi∈mthen⋃i Mi∈
 . Consequently,

  is a supratopology on H. 

Remark 4.17.Let (G,m) be anM-space and H⊆G, then m need not be a topology on H. Also, on the contrary to the case 

oftopological subspace, ifH⊆G is anm-open graph then the relation 
 ⊆m is not true. 

 The following example shows Remark (4.17), 

Example 4.18. 

According to Example(3.4), we get  

m  = {V(G), ,{v₄}, {v₁, v₃}, {v₁, v₅},{v₁, v₂, v₅}, {v₁, v₃, v₄}, {v₁, v₃, v₅},{v₁, v₄, v₅}, {v₂, v₃, v₄}, {v₂, v₄, v₅},{v₁, v₂, v₃, 

v₄}, {v₁, v₂, v₃, v₅}, {v₁, v₂, v₄, v₅}, {v₁, v₃, v₄, v₅},{v₂, v₃, v₄, v₅}}.  


  = {V(H), , {v₁}, {v₄}, {v₁, v₂}, {v₁, v₄}, {v₂, v₄}}.Obviously, 

 ⊈m. 

5. m-CONTINUITY AND m-HOMEOMORPHISM 

The concept of continuity is a basic one in mathematics. In this section, the m-continuous (m-open and m-closed) 

functions are defined and some of their properties are investigated. Furthermore, the m-homeomorphism is defined and 

some of its properties are studied. 

Definition 5.1.Let (G₁,m) and(G₂,m)be two M-spaces.A functionffrom G₁ intoG₂ is said to be m-continuous if 

the inverse image of each m-open graph in G₂ is m-open in G₁,that is, if  

V(H)∈m implies f¯¹(V(H))∈ m. 

Example 5.2. 

Let G₁=(V(G₁),E(G₁)):V(G₁)={v₁,v₂,v₃,v₄,v₅},E(G₁)={(v₁,v₁),(v₁,v₅),(v₂,v₃),(v₂,v₄),(v₃,v₁),(v₃,v₃),(v₅,v₃),(v₅,v₄),(v₅,v₅)} 

 
Figure 5.1: Graph G₁ given in Example 5.2 

Hence, we get 
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m(v₁)={{v₁,v₅},{v₁,v₃}},m(v₂) = {{v₃,v₄},{v₅}},m(v₃)={{v₁,v₃},{v₂,v₃}},m(v₄)={,{v₂,v₅}} 

andm(v₅)={{v₃,v₄,v₅},{v₁,v₅}}. 

So, the family m of all m-open graphs of the M-space (G₁, m) is given by: 

m ={V(G₁),, {v₄}, {v₁, v₃}, {v₁, v₅}, {v₁, v₂, v₅}, {v₁, v₃, v₄}, {v₁, v₃, v₅}, {v₁, v₄, v₅},  {v₂, v₃, v₄},  {v₂, v₄, 

v₅},{v₁, v₂, v₃, v₄}, {v₁, v₂, v₃, v₅}, {v₁, v₂, v₄, v₅}, {v₁, v₃, v₄, v₅}, {v₂,v₃,v₄,v₅}}. 

Also, letG₂=(V(G₂),E(G₂)): V(G₂)={u₁,u₂,u₃,u₄,u₅}, 

E(G₂)={(u₁,u₁),(u₂,u₃),(u₂,u₄),(u₃,u₄),(u₄,u₁),(u₄,u₄),(u₅,u₂),(u₅,u₅)}. 

 
Figure 5.2: Graph G₂  given in Example 5.2. 

So, m is defined by  

m(u₁)={{u₁},{u₁,u₄}},m(u₂)={{u₃,u₄},{u₅}},m(u₃)={{u₄,u₅},{u₂}},m(u₄)={{u₁,u₄},{u₂,u₃,u₄}} and 

m(u₅)={{u₂,u₅},{u₃,u₅}}. 

Consequently, the family m of all m-open graphs of the M-space (G₂, m) is given by 

m={V(G₂),,{u₁}, {u₁, u₄}, {u₂, u₅}, {u₁, u₂, u₅}, {u₂, u₃, u₄}, {u₂, u₃, u₅}, {u₁, u₂, u₃, u₄}, {u₁, u₂, u₃, u₅}, 

{u₁, u₂, u₄, u₅}, {u₁, u₃, u₄, u₅}, {u₂,u₃,u₄,u₅}}. 

Let f:G₁⟶G₂ and g:G₁⟶G₂such that  

f(v₁)=u₂,f(v₂)=u₅,f(v₃)=u₃,f(v₄)=u₁,f(v₅)=u₅andg(v₁)=u₄,g(v₂)=u₃,g(v₃)=u₁,g(v₄)=u₅,g(v₅)=u₂. 

Accordingly,the function f is m-continuous since the inverse image of each m-open graph in G₂is m-open 

inG₁.But the function g is not m-continuous becauseg¯¹({u₁})={u₃} and {u₃} is not m-open inG₁. 

Some properties of m-continuous functions are investigated in the following theorem 

Theorem 5.3.Let f be a function from an M-space (G₁,  ₁)into an M-space (G₂, ),then the following 

statements are equivalent: 

(a) f is m-continuous, 

(b) The inverse image of each m-closed graph in G₂is m-closed in G₁, 

(c) Clm(f¯¹(V(K)))⊆f¯¹(Clm(V(K))) for all K⊆G₂, 

(d) f(Clm(V(H)))⊆Clm(f(V(H)) for all H⊆G₁, 

(e) For each v∈V(G) and each m-open graph K⊆G₂ Containingf(v),there exists an m-open graph H⊆G₁ containing v 

such that f(V(H))⊆V(K), 
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(f) f([V(H)]` )⊆Clm(f(V(H))) for all H⊆G₁, 

(g) f¯¹(Intm(V(K)))⊆Intm(f¯¹(V(K)))for all K⊆G₂ and 

(h) Bdm(f¯¹(V(K)))⊆f¯¹(Bdm(V(K)))for all K⊆G₂. 

Proof.(a) ⟹(b). Let F⊆G₂ be anm-closed graph, then [V(G₂) ⎼V(F)] is m-open in G₂. Since f is m-continuous, 

then f¯¹(V(G₂)⎼V(F))=f¯¹(V(G₂))⎼f¯¹(V(F))= V(G₁) – f¯¹(V(F)) is m-open in G₁ and hencef¯¹(V(F)) is m-closed in G₁. 

(b)⟹(c). Let K⊆G₂, then Clm(V(K)) is m-closed in G₂ and since V(K)⊆Clm(V(K)), thus f¯¹(V(K))⊆f¯¹(Clm(V(K))). 

But, by(b),f¯¹(Clm(V(K))) is m-closed in G₁ which containing f¯¹(V(K))andconsequently Clm(f¯¹(V(K))) ⊆f¯¹(Clm(V(K))).  

(c)⟹(d). Let H⊆G₁, then f(H)⊆G₂ and so by (c), we have Clm(f¯¹(f(V(H)))⊆f¯¹(Clm(f(V(H))). Since 

V(H)⊆f¯¹(f(V(H))) then Clm(V(H))⊆Clm(f¯¹(f(V(H))) and hence Clm(V(H))⊆f¯¹(Clm(f(V(H))). Therefore 

f(Clm(V(H)))⊆f(f¯¹(Clm(f(V(H)))) ⊆Clm(f(V(H))). That is f(Clm(V(H)))⊆Clm(f(V(H))). 

(d)⟹(a). Let K⊆G₂ be anm-open graph, then F = (G₂⎼K) is m-closed graph in G₂ and so f¯¹(V(F))⊆V(G₁). By (d) 

we have f(Clm(f¯¹(V(F)))⊆Clm(f(f¯¹(V(F))). Since f(f¯¹(V(F))) ⊆V(F) then Clm(f(f¯¹(V(F)))⊆Clm(V(F)) = V(F) and so 

f(Clm(f¯¹(V(F))⊆V(F) implies f¯¹(f(Clm(f¯¹(V(F))))⊆ f¯¹(V(F)).But Clm(f¯¹(V(F)))⊆f¯¹(f(Clm(f¯¹(V(F)))) and so 

Clm(f¯¹(V(F)))⊆f¯¹(V(F)) and hence Clm(f¯¹(V(F))) = f¯¹(V(F)). Therefore f¯¹(V(F)) in m-closed in G₁. Because f¯¹(V(F)) = 

f¯¹(V(G₂) ⎼V(K)) = V(G₁) ⎼f¯¹(V(K)) then G₁⎼f¯¹(K) is m-closed in G₁ and then f¯¹(K) is m-open in G₁. 

(a)⟹(e). Let v∈V(G₁) and K⊆G₂ be an m-open graph containing f(v). Then, by (a), H = f¯¹(K) is an m-open graph 

in G₁ which containing v and hence f(H) = f(f¯¹(K))⊆K. i.e., f(H)⊆K.  

(e)⟹(a). Let K⊆G₂ be an m-open graph and f(v)∈V(K), then v∈f¯¹(V(K)). By (e), there exists an m-open graph 

H⊆G₁ containing v such that f(Hv)⊆K which implies v∈V(Hv) ⊆f¯¹(f(Hv))⊆f¯¹(V(K)). Thus {v} ⊆V(Hv)⊆f¯¹(V(K)) and 

hence ⋃v∈f¯¹(V(K)){v} ⊆⋃v∈f¯¹(V(K))V(Hv)⊆f¯¹(V(K)). But f ¯¹(V(K)) = ⋃v∈f¯¹(V(K)) {v} and so f¯¹(V(K))= ⋃v∈f¯¹(V(K)) V(Hv). 

Therefore f¯¹(V(K)) is an m-open graph in G₁ because it is a union of m-open graphs and hence f is continuous. 

(d)⟹(f). LetH⊆G₁. Since [V(H)]ˋ ⊆Clm(V(H)) and by (d) we have f([V(H)]ˋ ) ⊆f(Clm(V(H))) ⊆Clm(f(V(H))). So 

f([V(H)]ˋ )⊆Clm(f(V(H))). 

(f)⟹(d). Let K ⊆G₂be anm-closed graph, then V(K) = Clm(V(K)) and thus f¯¹(V(K)) = f¯¹(Clm(V(K))). Since 

f¯¹(V(K))⊆V(G₁), then by (f), f([f¯¹(V(K))]ˋ )⊆Clm(f(f¯¹(V(K))))⊆Clm(V(K)) = V(K), i.e., f([f ¯¹(V(K))]ˋ )⊆ V(K) implies[f 

¯¹(V(K))]ˋ ⊆f¯¹(f([f¯¹(V(K))]ˋ ))⊆f¯¹(V(K)) and so [f¯¹(V(K))]ˋ ⊆f¯¹(V(K)). Hence f¯¹(V(K)) is m-closed graph in G₁. 

(a)⇔(g). Let K ⊆G₂. Then Intm(V(K))⊆V(K) and so f¯¹(Intm(V(K)))⊆f¯¹(V(K)). Since Intm(V(K)) is m-open in G₂ 

and fis m-continuous, thenf¯¹(Intm(V(K))) is m-open in G₁. Now f¯¹(Intm(V(K))) is m-open contained in f¯¹(V(K)) so 

f¯¹(Intm(V(K)))⊆Intm(f¯¹(V(K))). Conversely, suppose that K is an m-open graph in G₂ then V(K) = Intm(V(K)) and so 

f¯¹(V(K)) = f¯¹(Intm(V(K))). By (g),f¯¹(V(K)) = f¯¹(Intm(V(K))) ⊆Intm(f¯¹(V(K)))⊆f¯¹(V(K)) and hence f¯¹(V(K)) 

=Intm(f¯¹(V(K))). Consequently, f¯¹(V(K)) is m-open in G₁ and thus f is m-continuous. 

(a)⟹(h). Suppose that f is m-continuous and K⊆G₂, then Clm(f¯¹(V(K)))⊆f¯¹(Clm(V(K)) and Intm(f¯¹(V(K)))⊇ 

f¯¹(Intm(V(K))). So [f¯¹(V(K))]  = [Clm(f¯¹(V(K))) ⎼Intm(f¯¹(V(K)))]⊆ [f¯¹(Clm(V(K))) ⎼f¯¹(Intm(V(K)))] = [f¯¹(Clm(V(K))) 

⎼Intm(V(K))] = f¯¹([V(K)] ). Accordingly, [f¯¹(V(K))]  = f¯¹([V(K)] ). 
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(h)⟹(b). Let Kbe an m-closed graph in G₂, then Clm(V(K)) = V(K) and so f¯¹(Clm(V(K))) = f¯¹(V(K)). Since 

[V(K)] ⊆Clm(V(K)) and by (h) we have [f¯¹(V(K))] ⊆ f¯¹([V(K)] )⊆f¯¹(Clm(V(K))) = f¯¹(V(K)), implies 

[f¯¹(V(K))] ⊆f¯¹(V(K)). But Intm(f¯¹(V(K)))⊆f¯¹(V(K)) and hence [f¯¹(V(K))] ⋃Intm(f¯¹(V(K))) ⊆f ¯¹(V(K)),implies 

Clm(f¯¹(V(K)))⊆f ¯¹((V(K)),implies Clm(f¯¹(V(K))) = f¯¹(V(K)). Therefore f¯¹(V(K)) is m-closed in G₁. 

Remark 5.4.Let (G₁,m)and (G₂,m) be M-space and f:G₁⟶G₂,then the following statements are not necessarily 

equivalent: 

(a) fis m-continuous. 

(b) For each v∈V(G) and each mixed degree M⊆G₂ of f(v),there exists a mixed degree N⊆G₁ of v such that f(N)⊆M. 

The next example illustrates Remark (5.4), 

Example 5.5. 

According to Example (5.2), let v = v₁∈V(G₁) and M = {u₃, u₄} ⊆V(G₂) which is a mixed degree of f(v) = f(v₁) = 

u₂. Obviously, there is no mixed degree N ⊆V(G₁) of such that f(N)⊆M = {u₃, u₄}. 

Theorem 5.6.Let (G₁, m) and (G₂, m) be two M-spaces and f : G₁⟶ G₂ be an m-continuous function,then : H 

⟶ G₂ is an m-continuous where H ⊆G₁is an M-subspace and  is the restriction offto H. 

Proof. Suppose that K is an m-open graph in G₂, i.e. K ∈m. Since f is m-continuous then f ¯¹(K) ∈m and  so H 

⋂f ¯¹(K)∈
 . But ¯¹(W) = H⋂f ¯¹(W) for all W ⊆G₂and thus ¯¹(K)= H ⋂f¯¹(K). Therefor ¯¹(K)∈

  and hence  is 

m-continuous.  

Theorem 5.7.Let (G₁, m), (G₂, m)and (G₃, m) be M-spaces. If f:G₁⟶G₂ and g : G₂⟶G₃ are m-continuous 

functions, then g∘ f : G₁⟶G₃ is also m-continuous. 

Proof. Let H be an m-open graph in W. Because g is m-continuous thus g¯¹(H) is m-open in G₂ and since f  is m-

continuous then f¯¹(g¯¹(H)) is m-open in G₁. But (g∘ f)¯¹(H)=f¯¹(g¯¹(H)), so (g∘ f)¯¹(H) is m-open in G₁. Consequently, g∘ 

fis m-continuous. 

Definition 5.8.Let (G₁,m) and (G₂,m) be two M-spaces.A functionffrom G₁ into G₂ is said to be m-open (m-

closed) if the image of each m-open (m-closed) graph in G₁ is m-open (m-closed) in G₂. 

In general,functions which are m-open need not be m-closed and vice versa as shown in the following example. 

Example 5.9. 

LetG₁=(V(G₁),E(G₁)):V(G₁)={v₁,v₂,v₃,v₄,v₅},E(G₁)={(v₁,v₂),(v₁,v₄),(v₂,v₂),(v₂,v₃),(v₂,v₄),(v₃,v₁),(v₃,v₄),(v₄,v₃),(v₄,v₅),(v₅,v₂),

(v₅,v₅)}. 

   
Figure 5.3: Graph G₁ given in Example 5.9 
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Hence, we get 

m(v₁)={{v₂,v₄},{v₃}},m(v₂)={{v₂,v₃,v₄},{v₁,v₂,v₅}},m(v₃)={{v₁,v₄},{v₂,v₄}}, 

m(v₄)={{v₃,v₅},{v₁,v₂,v₃}} andm(v₅)={{v₂,v₅},{v₄,v₅}}. 

So, the families of m-open graphs and m-closed graphs of the M-space (G₁, m) are given respectively by  

Fm={V(G₁), ,{v₁},{v₂},{v₅}}. 

m ={V(G₁), ,{v₁, v₂, v₃, v₄}, {v₁, v₃, v₄, v₅}, {v₂,v₃,v₄,v₅}}. 

Also, let G₂=(V(G₂),E(G₂)):V(G₂)={u₁,u₂,u₃,u₄,u₅}, 

E(G₂)={(u₁,u₁),(u₁,u₅),(u₂,u₃),(u₂,u₄),(u₃,u₁),(u₃,u₃),(u₅,u₂),(u₅,u₄),(u₅,u₅)} 

 
Figure 5.4: Graph G₂ given in Example 5.9 

Thus, m is defined by   

m(u₁)={{u₁,u₅},{u₁,u₃}},m(u₂)={{u₃,u₄},{u₅}},m(u₃)={{u₁,u₃},{u₂,u₃}},m(u₄)={,{u₂,u₅}} and 

m(u₅)={{u₂,u₄,u₅},{u₁,u₅}}. 

Consequently, the families of m-open graphs and m-closed graphs of the M-space (G₂, m) are given respectively 

by  

Fm={V(G₂),,{u₁},{u₂},{u₃},{u₄},{u₅},{u₁,u₃},{u₁,u₅},{u₂,u₃},{u₂,u₄},{u₂,u₅},{u₃,u₄},{u₂,u₃,u₄},{u₂,u₄,u₅},{

u₁,u₂,u₃,u₅}}. 

m ={V(G₂),,{u₄}, {u₁, u₃}, {u₁, u₅}, {u₁, u₂, u₅}, {u₁, u₃, u₄}, {u₁, u₃, u₅}, {u₁, u₄, u₅}, {u₂, u₃, u₄}, {u₂, u₄, 

u₅}, {u₁, u₂, u₃, u₄}, {u₁, u₂, u₃, u₅}, {u₁, u₂, u₄, u₅}, {u₁, u₃, u₄, u₅}, {u₂,u₃,u₄,u₅}}. 

Let f:G₁⟶G₂ and g:G₁⟶G₂and h:G₁⟶G₂ such that 

f(v₁)=u₂,  f(v₂)=u₂, f(v₃)=u₃, f(v₄)=u₄, f(v₅)=u₅, 

g(v₁)=u₂, g(v₂)=u₄, g(v₃)=u₂, g(v₄)=u₄,  g(v₅)=u₅and 

h(v₁)=u₁, h(v₁)=u₂, h(v₃)=u₁, h(v₄)=u₅, h(v₅)=u₃. 

Accordingly, the function f is m-open but not m-closed sincef(G₁) = {u₂, u₃, u₄, u₅}which is not m-closed graph in 

G₂. Moreover, f is not m-continuous since f ¯¹({u₄}) = {v₄} and {v₄} is not m-open graph in G₁.On the other hand, the 

function g is m-closed but not m-open since g({v₁, v₂, v₃, v₄})= {u₂, u₄} which is not m-open graph in G₂. Finally, the 

function h is m-open and m-closed. 
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Example 5.10. 

According to Example (5.2), the function f is m-continuous but not m-open since f({v₁,v₃}) = {u₁, u₃} which is not 

m-open graph in G₂. 

Theorem 5.11.Let f be a function from the M-space (G₁,m) into the M-space (G₂,m),then the following 

statements are equivalent: 

(a) f is m-open, 

(b) f(Intm(V(H))⊆Intm(f(V(H))) for all H⊆G₁ and 

(c) For each v∈V(G) and each m-open graph O⊆G₁ containing v,there exists an m-open graph K⊆G₂ containing f(v) 

such that K⊆f(O). 

Proof.(a)⟹(b). Let H⊆G₁. Since Intm(V(H))⊆V(H) then f(Intm(V(H)))⊆f(V(H)). But, Intm(V(H)) is m-open graph 

in G₁ and f is m-open function. So, by (a), f(Intm(V(H))) is m-open in G₂ which contained in f(V(H)). Therefore, 

f(Intm(V(H)))⊆Intm(f(V(K))). 

(b)⟹(a). Suppose that H is an m-open graph in G₁, then V(H) = Intm(V(H)) and so f(V(H)) = f(Intm(V(H))). 

By (b), f(Intm(V(H))) ⊆Intm(f(V(H)), then f(V(H)) ⊆Intm(f(V(H))). But Intm(f(V(H)))⊆f(V(H)) and thus f(V(H)) = 

Intm(f(V(H))). Accordingly,f(H) is m-open graph in G₂ and hence f is m-open function.  

(a)⟹(c). Let v∈V(G₁) and H⊆G₁ be an m-open graph such that v∈V(H). Then, by (a),K = f(H) is an m-open 

graph in G₂ which containingf(v) and hence K⊆f(H). 

(c)⟹(a). Let H ⊆G₁ be an m-open graph and v∈V(H),then u = f(v)∈f(V(H)). By (c), there exists an m-open 

graph Ku⊆G₂ containing u such thatKu⊆f(V(H)) which implies u ∈V(Ku)⊆f(V(H)).Thus {u} ⊆Kv⊆f(V(H)) and hence 

⋃u ∈ f(V(H)){u} ⊆⋃u ∈ f(V(H))Ku⊆f(V(H)).But f(V(H)) = ⋃u∈f(V(H)){u} and so f(V(H)) = ⋃u∈f(V(H))Ku. Therefore, f(V(H)) is an 

m-open graph in G₂ because it is a union of m-open graphs and hence f is m-open. 

Remark 5.12.Let (G,m) and (G₂,m) be two M-space and f:G₁⟶G₂,then the following statements are not necessarily 

equivalent: 

(a) f ism-open. 

(b) For each v∈V(G) and each mixed degree M⊆V(G₁) of v, there exists a mixed degree N⊆V(G₂) of f(v) such that N⊆f(M). 

 The following example illustrates Remark (5.12), 

Example 5.13. 

According to Example (5.9), let v = v₃∈V(G₁) and N = {v₁, v₄} ⊆V(G₁) which is a mixed degree system of v₃. Obviously, there 

is no mixed degree system M⊆V(G₂) of f(v₃) = u₃ such that M⊆f(N) = {u₂, u₄}.   

Theorem 5.14. Letfbe a function from the M-space(G₁,m)into the M-space (G₂,m),then f is m-closed if and only if 

Clm(f(V(H)))⊆f(Clm(V(H))) for all H⊆G₁ . 

Proof. Suppose that f is m-closed and H⊆G₁. But V(H)⊆Clm(V(H)) which implies f(V(H))⊆f(Clm(V(H))) and so 

Clm(f(V(H)))⊆Clm(f(Clm(V(H)))). Since Clm(V(H)) is m-closed in G₁ and f is m-closed, then f(Clm(V(H)))is m-closed in G₂. Thus 

f(Clm(V(H))) = Clm(f(Clm(V(H))) and hence Clm(f(V(H)))⊆f(Clm(V(H))). Conversely, let H be an m-closed graph in G₁, then V(H) = 
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Clm(V(H)) and so f(V(H)) = f(Clm(V(H))). Since Clm(f(V(H)))⊆f(Clm(V(H))) thus Clm(f(V(H)))⊆f(V(H)). But f(V(H))⊆Clm(f(V(H))) then 

f(V(H)) = Clm(f(V(H))) and hence f(V(H)) is m-closed in G₂. Consequently, f is m-closed function. 

Definition 5.15.Let (G₁,m)and (G₂,m) be two M-space. A function ffrom G₁ into G₂ is said to be an m-homeomorphism if 

(a) f is bijective. 

(b) f and f¯¹are m-continuous. 

The two M-spaces G₁ and G₂ are called m-homeomorphic. 

Example 5.16. 

Let G₁=(V(G₁),E(G₁)): V(G₁)={v₁,v₂,v₃}, E(G₁)={(v₁,v₂),(v₂,v₃),(v₃,v₃)} 

 

Figure 5.5: Graph G₁ given in Example 5.16 

Then,m is given by 

m(v₁)={{v₂},},m(v₂)={{v₃},{v₁}} andm(v₃)={{v₃},{v₂,v₃}}. 

m ={V(G₁),, {v₁}, {v₃}, {v₁, v₂}, {v₁, v₃}, {v₂,v₃}}. 

Also,let G₂=(V(G₂),E(G₂)):V(G₂)={u₁,u₂,u₃}, E(G₂)={(u₁,u₁),(u₂,u₁),(u₃,u₂),(u₃,u₃)}. 

 
Figure 5.6: Graph G₂ given in Example 5.17 

Thus,m is given by  

m(u₁)={{u₁},{u₁,u₂}},m(u₂)={{u₁},{u₃}}andm(u₃)={{u₂,u₃},{u₃}}. 

m ={V(G₂),,{u₁}, {u₃}, {u₁, u₂}, {u₁, u₃}, {u₂,u₃}}. 

Let f:G₁⟶G₂ and g:G₁⟶G₂  

f(v₁)=u₃, f(v₂)=u₂, f(v₃)=u₁ and 

g(v₁)=u₂, g(v₂)=u₁, g(v₃)=u₃. 

Accordingly, the function f is m-homeomorphism since f is bijective. Also, f and f ¯¹are m-continuous. But the function g is not 

m-homeomorphism since g({v₁}) = {u₂} and {u₂} is not m-open graph in G₂which implies g¯¹is not m-continuous. Furthermore, 

g¯¹({u₁}) = {v₁} and {v₁} is not m-open graph in G₁which implies g is not m-continuous. 

Theorem 5.17.Let fbe a bijective function from the M-space (G₁,m) onto the M-space (G₂,m),then the following statements 

are equivalent: 
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(a) f is an m-homeomorphism, 

(b) f is m-continuous and m-open, 

(c) f is m-continuous and m-closed and 

(d) Clm (f (V (H)) =f (Clm (V (H))) for all H⊆G₁. 

Proof: The proof is obvious.  
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