TOPOLOGICAL STRUCTURES USING MIXED DEGREE SYSTEMS IN GRAPH THEORY

 YOUSIF YAQOUB YOUSIF \& SARA SAAD OBAID

 YOUSIF YAQOUB YOUSIF \& SARA SAAD OBAID
 Department of Mathematics, Faculty of Education for Pure Science (Ibn Al-Haitham), Baghdad University, Baghdad, Iraq

Abstract

This paper is concerned with introducing and studying the M-space by using the mixed degree systems which are the core concept in this paper. The necessary and sufficient condition for the equivalence of two reflexive M-spaces is super imposed. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are introduced. From an M-space, a unique supratopological space is introduced. Furthermore, the m-continuous (m-open and m-closed) functions are defined and the fundamental theorem of the m-continuity is provided. Finally, the m-homeomorphism is defined and some of its properties are investigated.

KEYWORDS: Digraph, In-Degree System, Mixed Degree System, M-Space, Out-Degree System
2000 Mathematics Subject Classification: 04A05, 54A05, 05C20.

1. INTRODUCTION

For a long time, many individuals believed that abstract topological structures have limited application in the generalization of real line and complex plane or some connections to Algebra and other branches of mathematics. And it seems that there is a big gap between these structures and real life applications. We noticed that in some situations, the concept of relation is used to get topologies that are used in important applications such as computing topologies [12], recombination spaces [5, 6, and 13] and information granulation which are used in biological sciences and some other fields of applications.

Topological graph theory $[1,2,4,9$, and 10] is a branch of mathematics, whose concepts exists not only in almost all branches of mathematics, but also in many real life applications. We believe that topological graph structure will be an important base for narrow the gap between topology and its applications.

A directed graph or digraph [11] is pair $G=(V(G), E(G))$ where $V(G)$ is a non-empty set (called vertex set) and $E(G)$ of ordered pairs of elements of $V(G)$ (called edge set). An edge of the from (v, v) is called a loop. If $v \in V(G)$, the outdegree of v is $|\{u \in V(G):(v, u) \in E(G)\}|$ and in-degree of v is $|\{u \in V(G):(u, v) \in E(G)\}|$. A digraph is reflexive if $(v, v) \in E(G)$ for each $v \in V(G)$, symmetric if $(v, u) \in E(G)$ implies $(u, v) \in E(G)$, transitive if $(v, u) \in E(G)$ and $(u, w) \in E(G)$ implies (v, $w) \in E(G)$, tolerance if it is reflexive and symmetric, dominance if it is reflexive and transitive, equivalence if it is reflexive and symmetric and transitive, serial if for all $v \in V(G)$ there exists $u \in V(G)$ such that $(v, u) \in E(G)$.A sub graph of a graph G is a graph each of whose vertices belong to $V(G)$ and each of whose edges belong to $E(G)$. An empty graph [3] if the vertices set and edge set is empty. A subfamily μ of X is said to supratopology [8] on X if (i) $X, \phi \in \mu$ (ii) if $A_{i} \in \forall i \in j$ then $\cup A_{i} \in \mu$. (X, μ) is called supratopology space. Let $G=(V(G), E(G))$ be a digraph, the digraph inverse G^{-1} [7] is specified by the same set of vertices $V(G)$ and a set of edge $E(G)^{-1}=\{(u, v):(v, u) \in E(G)\}$.

2. MIXED DEGREE SYSTEMS AND M-SPACES

In this section, we introduce and investigate the notions of mixed degree systems, M-spaces and m-derived graphs which are essential for our present study.

Definition 2.1.

Let $G=(V(G), E(G))$ be digraph and a vertex $v \in V(G)$.
(a) The out-degree set of v is denoted by $v D$ and defined by: $v D=\{u \in V(G):(v, u) \in E(G)\}$ and
(b) The in-degree set of v is denoted by $D v$ and defined by: $D v=\{u \in V(G):(u, v) \in E(G)\}$.

Definition 2.2.

Let $G=(V(G), E(G))$ be a digraph, then the out-degree system(resp. in-degree system) of a vertex $v \in V(G)$ is denoted by $O D S(v)$ (resp. $I D S(v)$)and defined by:

$$
O D S(v)=\{v D\}(\text { resp. } I D S(v)=\{D v\})
$$

Example 2.3.

Let $\quad G=(V(G), E(G))$ be a such digraph that
$V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, E(G)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{5}\right),\left(v_{4}, v_{3}\right),\left(v_{4}, v_{4}\right),\left(v_{5}, v_{2}\right),\left(v_{5}, v_{4}\right),\left(v_{5}, v_{5}\right)\right\}$.

Figure 2.1: Graph G given in Example 2.3
Then we have $O D\left(v_{1}\right)=\left\{v_{1}, \quad v_{2}\right\}, O D\left(v_{2}\right)=\left\{v_{3}, \quad v_{5}\right\}, O D\left(v_{3}\right)=\phi, O D\left(v_{4}\right)=\left\{v_{3}, \quad v_{4}\right\}, O D\left(v_{5}\right)=\left\{v_{2}, \quad v_{4}\right.$, $\left.v_{5}\right\} . O D S\left(v_{1}\right)=\left\{\left\{v_{1}, v_{2}\right\}\right\}, O D S\left(v_{2}\right)=\left\{\left\{v_{3}, v_{5}\right\}\right\}, O D S\left(v_{3}\right)=\{\phi\}, O D S\left(v_{4}\right)=\left\{\left\{v_{3}, v_{4}\right\}\right\}$ and $O D S\left(v_{5}\right)=\left\{\left\{v_{2}, v_{4}, v_{5}\right\}\right\}$.

Also, we have $\operatorname{ID}\left(v_{1}\right)=\left\{v_{1}\right\}, I D\left(v_{2}\right)=\left\{v_{1}, v_{5}\right\}, \operatorname{ID}\left(v_{3}\right)=\left\{v_{2}, v_{4}\right\}, \operatorname{ID}\left(v_{4}\right)=\left\{v_{4}, v_{5}\right\}, \operatorname{ID}\left(v_{5}\right)=\left\{v_{2}, v_{5}\right\} . \operatorname{IDS}\left(v_{1}\right)=\left\{\left\{v_{1}\right\}\right\}, \operatorname{IDS}\left(v_{2}\right)=\left\{\left\{v_{1}, v_{5}\right\}\right\}, \operatorname{IDS}\left(v_{3}\right)=$ $\left\{\left\{v_{2}, v_{4}\right\}\right\}, \operatorname{IDS}\left(v_{4}\right)=\left\{\left\{v_{4}, v_{5}\right\}\right\}$ and $\operatorname{IDS}\left(v_{5}\right)=\left\{\left\{v_{2}, v_{5}\right\}\right\}$.

Definition 2.4.

Let $G=(V(G), E(G))$ be a digraph. The mixed degree system of a vertex $v \in V(G)$ is denoted by $M D S(v)$ and defined by $\operatorname{MDS}(v)=\{O D S(v), I D S(v)\}$.

Definition 2.5.

Let $G=(V(G), E(G))$ be a digraph the mixed degree of a vertex $v \in V(G)$ is denoted by $M D(v)$ such that $M D(v) \in M D S(v)$.

Example2.6.

According to Example (2.3), the mixed degree systems are given by
$\operatorname{MDS}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}\right\}\right\}, \operatorname{MDS}\left(v_{2}\right)=\left\{\left\{v_{3}, v_{5}\right\},\left\{v_{1}, v_{5}\right\}\right\}, \operatorname{MDS}\left(v_{3}\right)=\left\{\phi,\left\{v_{2}, v_{4}\right\}\right\}, \operatorname{MDS}\left(v_{4}\right)=\left\{\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\}\right\}$ and $\operatorname{MDS}\left(v_{5}\right)=\left\{\left\{v_{2}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{5}\right\}\right\}$.

Definition 2.7.

Let $G=(V(G), E(G))$ be a digraph and suppose that $\xi_{m}: V(G) \rightarrow P(P(V(G)))$ is a mapping which assigns for each v in $V(G)$ its mixed degree system in $P(P(V(G)))$. The pair $\left(G, \xi_{m}\right)$ is called an M-space.

Example 2.8.

Let $G=(V(G), E(G))$ be a digraph such that $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, E(G)=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{4}\right),\left(v_{2}, v_{2}\right),\left(v_{4}, v_{5}\right),\left(v_{4}, v_{5}\right),\left(v_{4}, v_{3}\right),\left(v_{5}, v_{5}\right)\right\}$.

Figure 2.2: Graph G Given in Example 2.8

Thus we get

$$
\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{2}, \quad v_{4}\right\}, \phi\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{2}\right\},\left\{v_{1}, \quad v_{2}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\phi,\left\{v_{4}\right\}\right\}, \xi_{m}\left(v_{4}\right)=\left\{\left\{v_{3}, \quad v_{5}\right\},\left\{v_{1}\right\}\right\} \quad \text { and } \xi_{m}\left(v_{5}\right)=\left\{\left\{v_{5}\right\},\left\{v_{4},\right.\right.
$$ $\left.\left.v_{5}\right\}\right\}$.There for $\left(G, \xi_{m}\right)$ is an M-space.

An M-space is defined by the mapping ξ_{m} and a given graph G for which there are defined two different mappings $\xi_{\square_{1}}$ and $\xi_{\square_{2}}$ given two different corresponding M-spaces.

It might see that the concept of M-spaces without additional assumptions on graph G is two general to embrace many properties. It will be seen however that, with suitable definitions, a whole concept of M-spaces can be developed and certain of its results find an application in generalized rough set theory.

Definition 2.9:

Let $\left(G, \xi_{m}\right)$ be an M-space. A vertex v in $V(G)$ is called a limit vertex of a graph $H \subseteq G$ if every mixed degree of v contains at least one vertex of H different from v. The set of all limit vertices of a graph $H \subseteq G$ is called the m-derived graph of H and is denoted by $[V(H)]_{m}^{\prime}$, that is,

$$
[V(H)]_{m}^{\prime}=\{v \in V(G) ; \forall M D(v), M D(v) \cap(V(H)-\{v\}) \neq \phi\} .
$$

Example 2.10.

In Example (2.8), if $H \subseteq G, H=(V(H), E(H)): V(H)=\left\{v_{1}, v_{2}, v_{3}\right\}, E(H)=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{2}\right)\right\}$

Figure 2.3: Sub graph H of graph \boldsymbol{G} Given in Example 2.10
Then $[V(H)]_{m}{ }_{.}=\left\{v_{4}\right\}$.
Suppose that $\Psi_{m}: P(V(G)) \rightarrow P(V(G))$ is am aping which assigns for every graph $H \subseteq G$ a set $\Psi_{m}(V(H)) \subseteq V(G)$ such that $\Psi_{m}(V(H))=[V(H)]_{m}$. Obviously, by Definition (2.9), the mapping Ψ_{m} satisfies the following properties:
(a) $\Psi_{m}(\phi)=\phi$,
(b) If $H \subseteq K$, then $\Psi_{m}(V(H)) \subseteq \Psi_{m}(V(K))$ for all $H, K \subseteq G$ and
(c) If $v \in \Psi_{m}(V(H))$, then $v \in(V(H)-\{v\})$.

Definition 2.11.

Two M-spaces $\left(G_{1}, \xi_{m_{1}}\right)$ and $\left(G_{2}, \xi_{m_{2}}\right)$ such that $V\left(G_{1}\right)=V\left(G_{2}\right)$ are said to be equivalent if the $\quad m$-derived graph of each sub graph in $\left(G_{1}, \xi_{m_{1}}\right)$ equal to the m-derived graph of the same sub graph $\operatorname{in}\left(G_{2}, \xi_{m_{2}}\right)$.In other words, the two M spaces $\left(G_{1}, \xi_{m_{1}}\right)$ and $\left(G_{2}, \xi_{m_{2}}\right)$ are equivalent if and only if $[V(H)]_{m_{1}}=[V(H)]_{m_{2}}$ for all $V(H) \subseteq V\left(G_{1}\right)$.

Example 2.12.

Let $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right), G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right): V\left(G_{1}\right)=V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $E\left(G_{1}\right)=\left\{\left(v_{1}, v_{1}\right),\left(v_{2}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ and $E\left(G_{2}\right)=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{3}\right)\right\}$.

Figure 2.4: Graphs \boldsymbol{G}_{1} and $\boldsymbol{G}_{\boldsymbol{2}}$ given in Example 2.12
Then $\xi_{m_{1}}$ Induced by G_{1} is given by:
$\xi_{m_{1}}\left(v_{1}\right)=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}\right\}\right\}, \xi_{m_{1}}\left(v_{2}\right)=\left\{\left\{v_{1}\right\},\left\{v_{3}\right\}\right\}$ and $\xi_{m_{1}}\left(v_{3}\right)=\left\{\left\{v_{2}, v_{3}\right\},\left\{v_{3}\right\}\right\}$.
Also, $\xi_{m_{2}}$ induced by G_{2} is given by:

$$
\left.\xi_{m_{2}}\left(v_{1}\right)=\left\{\left\{v_{2}\right\}, \phi\right\}\right\}, \xi_{m_{2}}\left(v_{2}\right)=\left\{\left\{v_{3}\right\},\left\{v_{1}\right\}\right\} \text { and } \xi_{m_{2}}\left(v_{3}\right)=\left\{\left\{v_{3}\right\},\left\{v_{2}, v_{3}\right\}\right\} .
$$

The two M-space $\left(G_{1}, \xi_{m_{1}}\right)$ and $\left(G_{2}, \xi_{m_{2}}\right)$ are equivalent.

Example 2.13:

Let: $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right), G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right): V\left(G_{1}\right)=V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}, E\left(G_{1}\right)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{1}\right)\right\}, E\left(G_{2}\right)=\left\{\left(v_{1}\right.\right.$,$\left.\left.v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{2}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{1}\right)\right\}$.

Figure 2.5: Graphs \boldsymbol{G}_{1} and $\boldsymbol{G}_{\boldsymbol{2}}$ Given in Example 2.13.
Then $\xi_{m_{1}}$ Induced by G_{1} is given by:

$$
\xi_{m_{1}}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{2}\right\}, V\left(G_{1}\right)\right\}, \xi_{m_{1}}\left(v_{2}\right)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{1}\right\}\right\} \text { and } \xi_{m_{1}}\left(v_{3}\right)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{5}\right\}\right\} .
$$

Also $\xi_{m_{2}}$ induced by G_{2} is given by:
$\xi_{m_{2}}\left(v_{1}\right)=\left\{\left\{v_{2}, v_{3}\right\},\left\{v_{3}\right\}\right\}, \xi_{m_{2}}\left(v_{2}\right)=\left\{\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}\right\}$ and $\xi_{m_{2}}\left(v_{3}\right)=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}\right\}\right\}$.
Let $H \subseteq G_{1}, G_{2} ; \quad V(H)=\left\{v_{1}, v_{3}\right\}$, then $[V(H)]_{m_{1}}=\left\{v_{2}\right\} \quad$ and $[V(H)]_{m_{2}}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Accordingly, there exists $H \subseteq G_{1}, G_{2}$, namely $V(H)=\left\{v_{1}, v_{3}\right\}$ such that $[V(H)]_{m_{1}}^{\prime} \neq[V(H)]_{m_{2}}^{〕}$ and hence the two M-spaces $\left(G_{1}, \xi_{m_{1}}\right)$ and $\left(G_{2}, \xi_{m_{2}}\right)$ are not equivalent.

Definition 2.14.

An M-space $\left(G, \xi_{m}\right)$ is called reflexive (resp.serial, symmetric, transitive, and equivalence)if ξ_{m} is induced by a reflexive (resp.serial, symmetric, transitive, and equivalence) graph.

Example 2.15.

Let $G=(V(G), E(G)): V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E(G)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{4}\right)\right\}$.

Figure 2.6: Graph G given in Example 2.15
Hence ξ_{m} is defined by $\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\left\{v_{1}, v_{3}, v_{4}\right\},\left\{v_{2}, v_{3}\right\}\right\}$ $\operatorname{and} \xi_{m}\left(v_{4}\right)=\left\{\left\{v_{4}\right\},\left\{v_{3}, v_{4}\right\}\right\}$.

Clearly, $\left(G, \xi_{m}\right)$ is reflexive M-space.

Example 2.16.

Let $G=(V(G), E(G)): V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E(G)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{4}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{2}\right),\left(v_{4}, v_{3}\right)\right\}$.

Figure 2.7: Graph G given in Example 2.16
Hence ξ_{m} is defined by $\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{4}\right\}\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{4}\right\},\left\{v_{1}, v_{3}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\left\{v_{2}, v_{3}\right\},\left\{v_{3}\right\}\right\}$ and $\xi_{m}\left(v_{4}\right)$ $=\left\{\left\{v_{4}\right\},\left\{v_{2}\right\}\right\}$.Clearly, $\left(G, \xi_{m}\right)$ is serial M-space.

Example 2.17.

Let $G=(V(G), E(G)): V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E(G)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{3}\right)\right\}$.

Figure 2.8: Graph G given in Example 2.17
Hence ξ_{m} is defined by $\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{2}\right\}\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{1}, v_{3}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\left\{v_{2}, v_{3}, v_{4}\right\}\right\}$ and $\xi_{m}\left(v_{4}\right)=$ $\left\{\left\{v_{3}\right\}\right\}$.Clearly, $\left(G, \xi_{m}\right)$ is symmetric M-space.

Example 2.18.
Let $G=(V(G), E(G)): V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E(G)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{2}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{1}\right),\left(v_{4}, v_{2}\right)\right\}$.

Figure 2.9: Graph G given in Example 2.18
Hence ξ_{m} is defined by $\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\left\{v_{1}, v_{2}, v_{4}\right\}, \phi\right\}$ $\operatorname{and} \xi_{m}\left(v_{4}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{3}\right\}\right\}$.Clearly, $\left(G, \xi_{m}\right)$ is transitive M-space.

Example 2.19.
Let $G=(V(G), E(G)): V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E(G)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right),\left(v_{4}, v_{4}\right)\right\}$.

Figure 2.10: Graph G given in Example 2.19

Hence ξ_{m} is defined by $\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{2}, v_{3}\right\}\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{1} v_{2}, v_{3}\right\}\right\}$ $\operatorname{and} \xi_{m}\left(v_{4}\right)=\left\{\left\{v_{4}\right\}\right\}$.Clearly, $\left(G, \xi_{m}\right)$ is equivalence M-space.

Lemma 2.20.

In an reflexive M-space each vertex contained in each one of its mixed degrees.
Proof: Let $\left(G, \xi_{m}\right)$ be a reflexive M-space. So ξ_{m} is induced by a reflexive graph G and hence $v \in O D$ (v) for all $v \in V(G)$. Since G is reflexive, then $G^{-\quad}$ is also reflexive and so $v \in I D(v)$ for all $v \in V(G)$. Consequently $v \in M D$ (v) for all $v \in V(G)$.

Theorem 2.21. Two reflexive M-spaces $\left(G_{1}, \xi_{m_{1}}\right)$ and $\left(G_{2}, \xi_{m_{2}}\right)$ such that $V\left(G_{1}\right)=V\left(G_{2}\right)=V(G)$ are equivalent if and only if for each mixed degree $M_{1} D(v)$ of a vertex $v \in V(G)$ there exists $M_{2} D(v)$ which is contained in $M_{1} D(v)$ and vice versa.

Proof. Let $\left(G_{1}, \xi_{m_{1}}\right)$ and $\left(G_{2}, \xi_{m_{2}}\right)$ be two equivalent reflexive M-spaces and $v \in V(G)$. Suppose that $M_{1} D(v)$ is mixed degree of v and since $\left(G_{1}, \xi_{m_{1}}\right)$ is reflexive M-space, then by Lemma(2.19), we have $v \in M_{1} D(v)$. Putting $V(H)=V(G)-M_{1} D(v)$, hence $M_{1} D(v) \cap V(H)=\phi$ and so $v \notin V(H)$ and $v \notin[V(H)]_{m_{1}}^{〕}$. Since $\left(G_{1}, \xi_{m_{1}}\right)$ and $\left(G_{2}, \xi_{m_{2}}\right)$ are equivalent then the m-derived graphs of H are the same in both M spaces, i.e. $[V(H)]_{m_{1}}=[V(H)]_{m_{2}}$ and hence $v \in[V(H)]_{m_{2}}$. Accordingly, there exists $M_{2} D(v)$ such that $M_{2} D(v) \cap[V(H)-\{v\}]=\phi$ and since $v \notin V(H)$ then $M_{2} D(v) \cap V(H)=\phi$, therefore $M_{2} D(v) \subseteq V(G)-V(H)=M_{1} D(v)$, i.e. $M_{2} D(v) \subseteq M_{1} D(v)$.Similarly, because of the symmetry of the condition, for every mixed degree $M_{2} D(v)$ there exists a mixed degree $M_{1} D(v)$ which is contained in $M_{2} D(v)$. Consequently, the condition of the theorem is necessary.

Conversely, suppose that the condition of the theorem is satisfied and let $V(H) \subseteq V(G)$.If $v \notin[V(H)]_{m_{1}}^{\prime}$, then there is $M_{1} D(v)$ such that $M_{1} D(v) \cap[V(H)-\{v\}]=\phi$. But, by the condition of theorem, there exists $M_{2} D(v)$ such that $M_{2} D(v) \subseteq M_{1} D(v)$, and so $M_{2} D(v) \cap[V(H)-\{v\}]=\phi$ which implies $v \notin[V(H)]_{m_{2}}$, and hence $[V(H)]_{m_{2}} \subseteq[V(H)]_{m_{1}}$. Similarly, we can show that $[V(H)]_{m_{1}} \subseteq[V(H)]_{m_{2}}$. As a consequence we see that $[V(H)]_{m_{1}}^{\prime}=[V(H)]_{m_{2}}^{\prime}$ for all $V(H) \subseteq V(G)$ and therefore the two M-space are equivalent.

The following example illustrates the idea of Theorem (2.20),

Example 2.22.

$\operatorname{Let} G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right): V\left(G_{1}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}, E\left(G_{1}\right)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{2}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\} \quad$ and $\quad G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right):$ $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}, E\left(G_{2}\right)=\left\{\left(v_{1}, v_{1}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{2}\right),\left(v_{3}, v_{1}\right)\right\}$.

Figure 2.11: Graphs \boldsymbol{G}_{1} and $\boldsymbol{G}_{\boldsymbol{2}}$ given in Example 2.22
Then $\xi_{m_{1}}$ induced by G_{1} is given by $\xi_{m_{1}}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}\right\}\right\}, \xi_{m_{1}}\left(v_{2}\right)=\left\{\left\{v_{2}\right\},\left\{v_{1}, v_{2}, v_{3}\right\}\right\}$ and $\xi_{m_{1}}\left(v_{3}\right)=\left\{\left\{v_{2}\right.\right.$, $\left.\left.v_{3}\right\},\left\{v_{3}\right\}\right\}$.

Also, $\xi_{m_{2}}$ induced by G_{2} is given by $\xi_{m_{2}}\left(v_{1}\right)=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}\right\}\right\}, \xi_{m_{2}}\left(v_{2}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}\right\}\right\}$ and $\xi_{m_{2}}\left(v_{3}\right)=\left\{\left\{v_{1}\right\}, \phi\right\}$.

Obviously, the two reflexive M-spaces $\left(G_{1}, \xi_{m_{1}}\right)$ and $\left(G_{2}, \xi_{m_{2}}\right)$ are equivalent since the condition of Theorem(2.21), is satisfied.

3. M-Closed Graph and \boldsymbol{m}-Closure Operators

In this section, we introduce the notions of m-closed graphs and m-closure operators and we study some of their properties.

Definition 3.1.

In an M-space $\left(G, \xi_{m}\right)$, a graph which contains all its limit vertices is called m-closed. The family $F_{\xi m}$ of all m closed graphs of an M-space is defined by:
$\mathscr{F}_{\underline{\xi} m}=\left\{V(H) \subseteq V(G) ;[V(H)]_{m}^{\prime} \subseteq V(H)\right\}$.

Theorem 3.2.

In an M-space, the intersection of any family of m-closed graphs is m-closed.
Proof.Let $\left(G, \xi_{m}\right)$ be an M-space such that $K \in G$ and $V(K)=\bigcap_{i}\left(V\left(H_{i}\right) ; i \in I\right.$, be the intersection of the m-closed graphs $H_{i} \subseteq G, i$ $\in I$. Hence $K \subseteq H_{i}$ for all $i \in I$ which implies $[V(K)]_{m}^{\prime} \subseteq\left[V\left(H_{i}\right)\right]_{m}^{\prime}$ for all $i \in I$. But $\left[V\left(H_{i}\right)\right]_{m} \subseteq V\left(H_{i}\right)$ for all i $\in I$ since H_{i} is m-closed and so $[V(K)]_{m} \subseteq V\left(H_{j}\right)$ for all $i \in I$ thus, $[V(K)]_{m}^{\circ} \subseteq \bigcap_{i}\left(V\left(H_{i}\right)\right)=V(K)$ and hence K is m-closed.

If follows from definition of an m-closed graph that the empty graph ϕ is m-closed ($\dot{\phi}_{m}=\phi \subseteq \phi$) and the whole M-space G is also m-closed ($\left.G_{m}^{\prime} \subseteq G\right)$.Consequently, for every $H \subseteq G$ there exists at least one m-closed graph,namely G,containing H.

Remark 3.3.The union of two m-closed graphs contained in an M-space need not be m-closed as shown in the following example.

Example 3.4.

$$
\text { Let } G=(V(G), E(G)): V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, E(G)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{5}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{3}\right),\left(v_{5}, v_{2}\right),\left(v_{5}, v_{4}\right),\left(v_{5}, v_{5}\right)\right\}
$$

Figure 3.1: Graph G given in Example 3.4
$\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{5}\right\},\left\{v_{1}, v_{3}\right\}\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{3}, v_{4}\right\},\left\{v_{5}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}\right\}, \xi_{m}\left(v_{4}\right)=\left\{\phi,\left\{v_{2}, v_{5}\right\}\right\}, \xi_{m}\left(v_{5}\right)$ $=\left\{\left\{v_{2}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{5}\right\}\right\}$.

Accordingly, the family $\mathscr{F}_{\xi m}$ of all m-closed graphs of this M-space is given by
$\mathscr{F}_{\xi_{m}}=\left\{V(G), \phi,\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{1}, v_{5}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{2}, v_{5}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{2}, v_{3}, v_{4}\right\},\left\{v_{2}, v_{4}, v_{5}\right\},\left\{v_{1}, v\right.\right.$ $\left.\left.{ }_{2}, v_{3}, v_{5}\right\}\right\}$.

Obviously, thegraphs $H=(V(H), E(H)): V(H)=\left\{v_{1}\right\}, E(H)=\left\{\left(v_{1}, v_{1}\right)\right\}$ and $K=(V(K), \quad E(K)): V(K)=\left\{v_{2}\right\}, E(K)=\phi$ are $\quad m$ closed but their union $H \cup K=(V(H \cup K), E(H \cup K)): V(H \cup K)=\left\{v_{1}, v_{2}\right\}, E(H \cup K)=\left\{\left(v_{1}, v_{1}\right)\right\}$ is not m-closed.

Theorem 3.5.If $\left(G, \xi_{m}\right)$ is an M-space and $H \subseteq G$ is m-closed graph, then every graph contained in H and containing $[V(H)]_{m}^{\prime}$ is m-closed

Proof.Let $\left(G, \xi_{m}\right)$ be an M-space and $H, K \subseteq G$ such that H is m-closed graph and $[V(H)]_{m}^{\prime} \subseteq V(K) \subseteq V(H)$. Since $V(K) \subseteq V(H)$ then $[V(K)]_{m}^{`} \subseteq[V(H)]_{m}^{\prime}$ andso $[V(K)]_{m} \subseteq V(K)$ and therefor K is m-closed.

Corollary 3.6. The m-derived graph of an m-closed graph is m-closed.

Proof: The proof is an immediate consequence of the above theorem.

Definition 3.7.Let H be a sub graph of an M-space $\left(G, \xi_{m}\right)$. The intersection of all m-closed graphs containing H is called the m-closure of H and is denoted by $C l_{m}(V(H))$, i.e.
$C l_{m}(V(H))=\bigcap\left\{V(K) \in F_{\xi m} ; V(H) \subseteq V(K)\right\}$.

The operator $C l_{m}: P(V(G)) \square P(V(G))$ is called m-closure operator.
By Theorem (3.2), $C l_{m}(V(H))$ is m-closed graph for all $H \subseteq G$. Moreover, it is the smallest m-closed graph containing $V(H) . H$ is m-closed if and only if $V(H)=C l_{m}(V(H))$ and in particular, $C l_{m}\left(C l_{m}(V(H))\right)=C l_{m}(V(H))$.

Example 3.8.

In Example (3.4), let $H \subseteq G, H=(V(H), E(H)): V(H)=\left\{v_{1}, v_{2}, v_{3}\right\}, E(H)=\left\{\left(v_{1}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)\right\}$

Figure 3.2: Sub Graph \boldsymbol{H} of a Graph \boldsymbol{G} given in Example 3.8
So, $C l_{m}(V(H))=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$.
Proposition 3.9.If $\left(G, \xi_{m}\right)$ is an M-space and $H \subseteq G$, then $V(H) \cup[V(H)]_{m} \subseteq C l_{m}(V(H))$
Proof.Let $\left(G, \xi_{m}\right)$ be an M-space and $H \subseteq G$. Since $V(H) \subseteq C l_{m}(V(H)) \operatorname{then}[V(H)]_{m}^{\prime} \subseteq\left[C l_{m}(V(H))\right]_{m}^{\prime}$. But $\left[C l_{m}(V(H))\right]_{m} \subseteq C l_{m}(V(H))$ because $\quad C l_{m}(V(H)) \quad$ is $\quad m$-closed \quad and \quad so $\quad[V(H)]_{m} \subseteq C l_{m}(V(H))$. Accordingly $\quad V(H) \cup$ $[V(H)]_{m} \subseteq C l_{m}(V(H))$.

Remark 3.10.If $\left(G, \xi_{m}\right)$ is an M-space $H \subseteq G$, then the relation $V(H) \cup[V(H)]_{m}^{\prime}=C l_{m}(V(H))$ is not necessarily true.
The next example is employed as a counter example to show the above remark.

Example 3.11.

Let $G=(V(G), E(G)): V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, E(G)=\left\{\left(v_{1}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{3}, v_{4}\right),\left(v_{3}, v_{5}\right),\left(v_{4}, v_{1}\right),\left(v_{4}, v_{4}\right),\left(v_{5}, v_{2}\right),\left(v_{5}, v_{5}\right)\right\}$

Figure 3.3: Graph G given in Example 3.11
So, ξ_{m} is given by $\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{4}\right\}\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{3}, v_{4}\right\},\left\{v_{5}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\left\{v_{4}, v_{5}\right\},\left\{v_{2}\right\}\right\}, \xi_{m}\left(v_{4}\right)=\left\{\left\{v_{1}, v_{4}\right\}\right.$, $\left.\left\{v_{2}, v_{3}, v_{4}\right\}\right\}$ and $\xi_{m}\left(v_{5}\right)=\left\{\left\{v_{2}, v_{5}\right\},\left\{v_{3}, v_{5}\right\}\right\}$. Hence, we have
$\mathscr{F}_{\xi_{m} m}=\left\{V(G), \phi,\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{1}, v_{5}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{1}, v_{3}, v_{4}\right\},\left\{v_{2}, v_{3}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}\right\}$.
Let $H \subseteq G, H=(V(H), E(H)): V(H)=\left\{v_{2}, v_{4}\right\}, E(H)=\left\{\left(v_{2}, v_{4}\right),\left(v_{4}, v_{4}\right)\right\}$, then $[V(H)]_{m}=\left\{v_{3}\right\}$ and $C l_{m}(V(H))=\left\{v_{2}, v_{3}, v_{4}\right.$, $\left.v_{5}\right\}$. Obviously, $V(H) \cup[V(H)]_{m}^{\prime} \neq C l_{m}(V(H))$

Figure 3.4: Sub graph \boldsymbol{H} of a graph \boldsymbol{G} given in Example 3.11
Proposition 3.12: If $\left(G, \xi_{m}\right)$ is an M-space, then the m-closure operator $C l_{m}: P(V(G)) \rightarrow P(V(G))$ possesses the following properties for all $H, K \subseteq G$:
(a) $C l_{m}(\phi)=\phi$,
(b) $C l_{m}(V(G))=V(G)$,
(c) $V(H) \subseteq C l_{m}(V(H))$,
(d) If $H \subseteq K$ then $C l_{m}(V(H)) \subseteq C l_{m}(V(K))$,
(e) $C l_{m}\left(C l_{m}(V(H))=C l_{m}(V(H))\right.$,
(f) $C l_{m}(V(H) \cap V(K)) \subseteq C l_{m}(V(H)) \cap C l_{m}(V(K))$ and
(g) $C l_{m}(V(H) \cup V(K)) \supseteq C l_{m}(V(H)) \cup C l_{m}(V(K))$.

Proof: Straightforward.
Remark 3.13. Let $\left(G, \xi_{m}\right)$ be an M-space, then the following proposition are not true in general for every $H, K \subseteq G$:
(a) $C l_{m}(V(H) \cap V(K))=C l_{m}(V(H)) \cap C l_{m}(V(K))$ and
(b) $C l_{m}(V(H) \cup V(K))=C l_{m}(V(H)) \cup C l_{m}(V(K))$.

The following example illustrates Remark (3.13),

Example 3.14.

According to Example (3.11), we have
(a) Let $H=(V(H), E(H)): V(H)=\left\{v_{2}, v_{4}\right\}, E(H)=\left\{\left(v_{2}, v_{4}\right),\left(v_{4}, v_{4}\right)\right\}$ then $C l_{m}(V(H))=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $K=(V(K)$, $E(K)): V(K)=\left\{v_{2}, \quad v_{5}\right\}, \quad E(K)=\left\{\left(v_{5}, \quad v_{2}\right),\left(v_{5}, \quad v_{5}\right)\right\} \quad$ then $\quad C l_{m}(V(K))=\left\{v_{2}, \quad v_{3}, \quad v_{5}\right\} . \quad$ But, $H \cap K=$ $(V(H) \cap V(K), E(H) \cap E(K)): V(H) \cap V(K)=\left\{v_{2}\right\}, E(H) \cap E(K)=\phi$ such that $C l_{m}(H \cap K)=C l_{m}(V(H) \cap V(K))=\left\{v_{2}\right\}$ and so $C l_{m}(V(H) \cap V(K)) \neq C l_{m}(V(H)) \cap C l_{m}(V(K))$.
(b) Let $H=(V(H), E(H)): V(H)=\left\{v_{4}\right\}, E(H)=\left\{\left(v_{4}, v_{4}\right)\right\}$ then $C l_{m}(V(H))=\left\{v_{4}\right\}$ and $K=(V(K), E(K)): V(K)=\left\{v_{5}\right\}$, $E(K)=\left\{\left(v_{5}, v_{5}\right)\right\}$ then $C l_{m}(V(K))=\left\{v_{5}\right\}$. But, $H \cup K=(V(H) \cup V(K), E(H) \cup E(K)): V(H) \cup V(K)=\left\{v_{4}, v_{5}\right\}, E(H) \cup E(K)$ $=\left\{\left(v_{4}, v_{4}\right),\left(v_{5}, v_{5}\right)\right\}$ such that $C l_{m}(H \cup K)=C l_{m}(V(H) \cup V(K))=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and so $C l_{m}(V(H) \cup$ $V(K)) \neq C l_{m}(V(H)) \cup C l_{m}(V(K))$.

4. m-OPEN GRAPHS AND m-INTERIOR OPERATOR

In this section we introduce the notions of m-open graphs, m-interior operators, m-boundary graphs and we study some of their properties. Also, the M-subspace is defined and some of its properties are investated.

Definition 4.1: The complement of an m-closed graph with respect to the M-space $\left(G, \xi_{m}\right)$ in which it is contained is called m-open graph. The family $\Omega_{\xi m}$ of all m-open graphs is defined by
$\Omega_{\underline{\xi} n}=\left\{V(O) \subseteq V(G) ; V(O)=V(G)-V(H)\right.$ such that $\left.V(H) \in \mathscr{F}_{\xi} n\right\}$.
In an M-space $\left(G, \xi_{m}\right)$, since the m-derived graph is uniquely defined it follows that the family $F_{\xi m}$ of all m-closed graphs of this M-space is also uniquely defined. Accordingly, the corresponding family $\Omega_{\xi n}$ of all m-open graphs is also uniquely defined. As a consequence, the families of m-open graphs in two equivalents M-spaces are identical.

Theorem 4.2: In an M-space, the union of any family of m-open graphs is m-open.
Proof.Let $\left(G, \xi_{m}\right)$ be an M-space such that $H \subseteq G a n d V(H)=\bigcup_{i} V\left(H_{i}\right)$ be the union of the m-open graphs $H_{i} \subseteq G, i$ $\in I$.Hence $V(G)-V(H)=V(G)-\bigcup_{i} V\left(H_{i}\right)=\bigcap_{i}\left[V(G)-V\left(H_{i}\right)\right]$. Putting $V\left(K_{i}\right)=\left[V(G)-V\left(H_{i}\right)\right]$ we have $V(G)-V\left(H_{i}\right)=\bigcap_{i} V\left(K_{i}\right)$ where $K_{i}, i \in I$, is m-closed graph. Hence byTheorem (3.2),V(G) $-V\left(H_{i}\right)$ is m-closed and therefore H is m-open.

Remark 4.3: Obviously, the empty graph and the whole M-space G are m-open graphs.
Remark 4.4.The intersection of two m-open graphs contained in an M-space is not necessarily m-open graph as shown in the next example.

Example 4.5.

According to Example (3.11).We have $\Omega_{\xi m}=\left\{V(G), \phi,\left\{v_{1}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}\right\},\left\{v_{2}, v_{3}\right.\right.$,
 Let $H=(V(H), E(H)): V(H)=\left\{v_{2}, v_{5}\right\}, E(H)=\left\{\left(v_{5}, v_{2}\right),\left(v_{5}, v_{5}\right)\right\} \quad$ is $\quad m$-open \quad and $K=(V(K), E(K)): V(K)=\left\{v_{2}, v_{3}, v_{4}\right\}$, $E(K)=\left\{\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{4}\right)\right\}$ is m-open.

Figure 4.1: Sub Graphs \boldsymbol{H} and \boldsymbol{K} of a Graph \boldsymbol{G} given in Example 4.5
But $H \cap K=(V(H \cap K), E(H \cap K)): V(H \cap K)=\left\{v_{2}\right\}, E(H \cap K)=\phi$ is not m-open.

Corollary 4.6: If $\left(G, \xi_{m}\right)$ is an M-space, then the family $\Omega_{\xi m}$ of all m-open graphs forms a supratopology on G.
Proof: The proof is immediately follows from Theorem (4.2), and Remark (4.3), and Remark (4.4).
Obviously, by Remark (4.4), the family $\Omega_{\xi m}$ of all m-open graphs in an M-space (G, ξ_{m}) need not be a topology on G.

Theorem 4.7: If $\left(G, \xi_{m}\right)$ is an M-space and $H \subseteq G$, then H is m-open if and only if it contains at least one mixed degree of each of its vertices.

Proof.Let $\left(G, \xi_{m}\right)$ be an M-space and H be an m-open graph contained in G and $v \in V(H)$. Suppose that for each mixed degree of $v, M D(v)$, we have $M D(v) \nsubseteq V(H)$, thus for each $M D(v), M D(v) \cap[V(G)-V(H)] \neq \phi$ which implies $v \in[V(G)$ $-V(H)]_{m}^{\prime}$. But $G-H$ is m-closed since H is m-open and so $[V(G)-V(H)]_{m} \subseteq[V(G)-V(H)]$ and hence $v \in[V(G)-V(H)]$. Therefore $v \notin V(H)$ which contradicts with $v \in V(H)$ and consequently if $H \subseteq G$ is m-open and $v \in V(H)$, then there exists at least one mixed degree of v which is contained in $V(H)$. Conversely, let H contains at least one mixed degree of each of its vertices,i.e.for all $v \in V(H)$ there exists $M D(v)$ such that $M D(v) \subseteq V(H)$. Let $u \in[V(G)-V(H)]_{m}^{\prime}$ then $u \notin V(H)$. For if $u \in V(H)$ there would be a mixed degree of $u, M D(u)$, such that $M D(u) \subseteq V(H)$ and this would imply that $M D(u) \cap[V(G)-V(H)]=\phi$ and thus $u \notin[V(G)-V(H)]_{m}^{\prime}$ which is impossible.Accordingly, $u \in[V(G)-V(H)]$ and so $[V(G)-V(H)]_{m}^{`} \subseteq[V(G)-V(H)]$ which implies $G-H$ is m-closed and hence H is m-open.

Definition 4.8.Let $\left(G, \xi_{m}\right)$ be an M-space and $H \subseteq G$, then the union of all m-open graphs contained in H is called the m-interior of H and denoted by $\operatorname{Int}_{m}(V(H))$, i.e.

$$
\operatorname{Int}_{m}(V(H))=\mathrm{U}\left\{V(O) \in \Omega_{\xi n} ; V(O) \subseteq V(H)\right\}
$$

The operator Int $_{m}: P(V(G)) \rightarrow P(V(G))$ is called the m-interior operator.
By Theorem (4.2), $\operatorname{Intm}(V(H))$ is m-open graph for $H \subseteq G$. Furthermore, it is the largest m-open graph containing in H and $\operatorname{Int}_{m}(V(H)) \subseteq V(H)$ for all $H \subseteq G$. Consequently, H is m-open graph if and only if $V(H)=\operatorname{Int}_{m}(V(H))$ and in particular, $\operatorname{Int}_{m}\left(\operatorname{Int}_{m}(V(H))\right)=\operatorname{Int}_{m}(V(H))$.

Example 4.9.According to Example (4.5), let $H \subseteq G ; H=(V(H), E(H)): V=\left\{v_{1}, v_{3}\right\}, E(H)=\left\{\left(v_{1}, v_{1}\right)\right\}$

Figure 4.2: Sub Graph \boldsymbol{H} of a Graph \boldsymbol{G} given in Example 4.9

Then $\operatorname{Int}_{m}(V(H))=\left\{v_{1}\right\}$.
Proposition4.10.If $\left(G, \xi_{m}\right)$ is an M-space, then the m-interior operator $\operatorname{Int}_{m}: P(V(G)) \longrightarrow P(V(G))$ satisfies the following properties for all $H, K \subseteq G$:
(a) $\operatorname{Int}_{m}(\phi)=\phi$,
(b) $\operatorname{Int}_{m}(V(G))=V(G)$,
(c) $\operatorname{Int}_{m}(V(H)) \subseteq V(H)$,
(d) If $H \subseteq K$ then $\operatorname{Int}_{m}(V(H)) \subseteq \operatorname{Int}_{m}(V(K))$,
(e) $\operatorname{Int}_{m}\left(\operatorname{Int} t_{m}(V(H))\right)=\operatorname{Int}_{m}(V(H))$,
(f) $\operatorname{Int}_{m}(V(H) \cap V(K)) \subseteq \operatorname{Int}_{m}(V(H)) \cap \operatorname{Int}_{m}(V(K))$ and
(g) $\operatorname{Int}_{m}(V(H) \cup V(K)) \supseteq \operatorname{Int}_{m}(V(H)) \cup \operatorname{Int}_{m}(V(K))$.

Proof: Straight forward.
Remark 4.11.Let $\left(G, \xi_{m}\right)$ be an M-space, then the following properties are not true in general for every $H, K \subseteq G$:
(a) $\operatorname{Int}_{m}(V(H) \cap V(K))=\operatorname{Int}_{m}(V(H)) \cap \operatorname{Int}_{m}(V(K))$ and
(b) $\operatorname{Int}_{m}(V(H) \cup V(K))=\operatorname{Int}_{m}(V(H)) \cup \operatorname{Int}_{m}(V(K))$.

The following example is employed to show the above remark.

Example 4.12:

In Example (4.5), we obtain
(a) $\operatorname{Let} H=(V(H), E(H)): V(H)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E(H)=\left\{\left(v_{1}, v_{1}\right),\left(v_{2}, v_{4}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{1}\right),\left(v_{4}, v_{4}\right)\right\} \quad$ then
$\operatorname{Int}_{m}(V(H))=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \operatorname{and} K=(V(K), E(K)): V(K)=\left\{v_{2}, v_{5}\right\}, E(K)=\left\{\left(v_{5}, v_{2}\right),\left(v_{5}, v_{5}\right)\right\}$ then $\operatorname{Int} t_{m}(V(K))=\left\{v_{2}, v_{5}\right\} . H \cap K=$ $(V(H \cap K), E(H \cap K)): V(H \cap K)=\left\{v_{2}\right\}$.

$$
\begin{aligned}
& \operatorname{Int}_{m}(V(H \cap K))=\phi \\
& \mathrm{So}, \operatorname{Int}_{m}(V(H) \cap V(K)) \neq \operatorname{Int}_{m}(V(H)) \cap \operatorname{Int}_{m}(V(K))
\end{aligned}
$$

(b) Let $H=(V(H), E(H)): V(H)=\left\{v_{1}, v_{3}\right\}, E(H)=\left\{\left(v_{1}, v_{1}\right)\right\}$ then $\operatorname{Int} t_{m}(V(H))=\left\{v_{1}\right\}$ and $K=(V(K), E(K)): V(K)=\left\{v_{1}, v_{2}, v_{4}\right\}, E(K)=\left\{\left(v_{1}, v_{1}\right),\left(v_{2}, v_{4}\right),\left(v_{4}, v_{1}\right),\left(v_{4}, v_{4}\right)\right\}$ then $\operatorname{Int}_{m}(V(K))=\left\{v_{1}, v_{2}, v_{4}\right\} \cdot H \cup K=(V(H \cup K), E(H \cup$ $K)): V(H \cup K)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} . \operatorname{Int}_{m}(V(H \cup K))=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$

So, $\operatorname{Int}_{m}(V(H) \cup V(K)) \neq \operatorname{Int}_{m}(V(H)) \cup \operatorname{Int}_{m}(V(K))$
Proposition 4.13.If $\left(G, \xi_{m}\right)$ is an M-space and $H \subseteq G$, then
(a) $\operatorname{Int}_{m}(V(H))=V(G)-\left[C l_{m}(V(G)-V(H))\right]$ and
(b) $C l_{m}(V(H))=V(G)-\left[\operatorname{Int}_{m}(V(G)-V(H))\right]$.

Proof: Obvious
Definition 4.14.Let $\left(G, \xi_{m}\right)$ be an M-space and $H \subseteq G$, then
$B d_{m}(V(H))=C l_{m}(V(H))-\operatorname{Int}_{m}(V(H))$ is called the m-boundary of H and
$\operatorname{Ext}_{m}(V(H))=V(G)-C l_{m}(V(H))$ is called the m-exterior of H.
Definition 4.15.Let $\left(G, \xi_{m}\right)$ be an M-space, $H \subseteq G$ and

$$
\Omega_{\xi m}^{H}=\left\{V(H) \cap V(O) ; V(O) \in \Omega_{\xi m}\right\}
$$

The pair $\left(H, \Omega_{\xi m}^{H}\right)$ is called an M-subspace of $\left(G, \xi_{m}\right)$.
Theorem 4.16.If H is a subgraph of the M-space $\left(G, \xi_{m}\right)$,then $\Omega_{\xi m}^{H}=\left\{V(H) \cap V(O): V(O) \in \Omega_{\xi n}\right\}$ is a supratoplogy on H.
Proof. Since $V(G)$ and ϕ are two members of $\Omega_{\xi m}$, then $H=H \cap G$ is a member of $\Omega_{\xi m}^{H}$ and $\phi=H \cap \phi \in \Omega_{\xi m}^{H}$. Nowlet $\left\{K_{i} \mid i \in I\right\}$ be a subclass of $\Omega_{\xi m}^{H}$, then by Definition(4.15) for each $i \in I$ there exists an m-open graph M_{i} such that $K_{i}=H \cap M_{i}$.Hence $U_{i} K_{i}=\mathrm{U}_{i}\left(H \cap M_{i}\right)=H$ $\cap\left(\cup_{i} M_{i}\right)$.But, by Theorem(4.2), $\cup_{i} M_{i} \in \Omega_{\xi n}$ then $_{i} M_{i} \in \Omega_{\xi m}^{H}$. Consequently, $\Omega_{\xi m}^{H}$ is a supratopology on H.

Remark 4.17.Let $\left(G, \xi_{m}\right)$ be an M-space and $H \subseteq G$, then $\Omega_{\xi m}$ need not be a topology on H. Also, on the contrary to the case oftopological subspace, if $H \subseteq G$ is an m-open graph then the relation $\Omega_{\xi m}^{H} \subseteq \Omega_{\xi m}$ is not true.

The following example shows Remark (4.17),

Example 4.18.

According to Example(3.4), we get
$\Omega_{\xi m}=\left\{V(G), \phi,\left\{v_{4}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{1}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{1}, v_{3}, v_{4}\right\},\left\{v_{1}, v_{3}, v_{5}\right\},\left\{v_{1}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}\right\},\left\{v_{2}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}\right.\right.$, $\left.\left.v_{4}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}\right\}$.

$$
\Omega_{\xi m}^{H}=\left\{V(H), \phi,\left\{v_{1}\right\},\left\{v_{4}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{4}\right\}\right\} \text {.Obviously, } \Omega_{\xi m}^{H} \nsubseteq \Omega_{\xi m} .
$$

5. m-CONTINUITY AND m-HOMEOMORPHISM

The concept of continuity is a basic one in mathematics. In this section, the m-continuous (m-open and m-closed) functions are defined and some of their properties are investigated. Furthermore, the m-homeomorphism is defined and some of its properties are studied.

Definition 5.1.Let $\left(G_{1}, \xi_{m}\right)$ and $\left(G_{2}, \zeta_{m}\right)$ be two M-spaces.A functionffrom G_{1} into G_{2} is said to be m-continuous if the inverse image of each m-open graph in G_{2} is m-open in G_{1}, that is, if
$V(H) \in \Omega_{\zeta m}$ implies $f^{1}(V(H)) \in \Omega_{\xi m}$.

Example 5.2.

$$
\text { Let } G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right): V\left(G_{1}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, E\left(G_{1}\right)=\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{5}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{3}\right),\left(v_{5}, v_{3}\right),\left(v_{5}, v_{4}\right),\left(v_{5}, v_{5}\right)\right\}
$$

Figure 5.1: Graph G_{1} given in Example 5.2
Hence, we get
$\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{1}, v_{5}\right\},\left\{v_{1}, v_{3}\right\}\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{3}, v_{4}\right\},\left\{v_{5}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}\right\}, \xi_{m}\left(v_{4}\right)=\left\{\phi,\left\{v_{2}, v_{5}\right\}\right\}$ and $\xi_{m}\left(v_{5}\right)=\left\{\left\{v_{3}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{5}\right\}\right\}$.

So, the family $\Omega_{\xi m}$ of all m-open graphs of the M-space $\left(G_{1}, \xi_{m}\right)$ is given by:
$\Omega_{\xi \rightarrow n}=\left\{V\left(G_{1}\right), \phi,\left\{v_{4}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{1}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{1}, v_{3}, v_{4}\right\},\left\{v_{1}, v_{3}, v_{5}\right\},\left\{v_{1}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}\right\},\left\{v_{2}, v_{4}\right.\right.$, $\left.\left.v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}\right\}$.

Also, $\quad \operatorname{let} G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right): \quad V\left(G_{2}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$, $E\left(G_{2}\right)=\left\{\left(u_{1}, u_{1}\right),\left(u_{2}, u_{3}\right),\left(u_{2}, u_{4}\right),\left(u_{3}, u_{4}\right),\left(u_{4}, u_{1}\right),\left(u_{4}, u_{4}\right),\left(u_{5}, u_{2}\right),\left(u_{5}, u_{5}\right)\right\}$.

Figure 5.2: Graph G_{2} given in Example 5.2.
So, ζ_{m} is defined by
$\zeta \zeta_{m}\left(u_{1}\right)=\left\{\left\{u_{1}\right\},\left\{u_{1}, u_{4}\right\}\right\}, \zeta_{m}\left(u_{2}\right)=\left\{\left\{u_{3}, u_{4}\right\},\left\{u_{5}\right\}\right\}, \zeta_{m}\left(u_{3}\right)=\left\{\left\{u_{4}, u_{5}\right\},\left\{u_{2}\right\}\right\}, \zeta_{m}\left(u_{4}\right)=\left\{\left\{u_{1}, u_{4}\right\},\left\{u_{2}, u_{3}, u_{4}\right\}\right\}$
and
$\zeta_{m}\left(u_{5}\right)=\left\{\left\{u_{2}, u_{5}\right\},\left\{u_{3}, u_{5}\right\}\right\}$.
Consequently, the family $\Omega_{\zeta m}$ of all m-open graphs of the M-space $\left(G_{2}, \zeta_{m}\right)$ is given by
$\Omega_{\zeta m}=\left\{V\left(G_{2}\right), \phi,\left\{u_{1}\right\},\left\{u_{1}, u_{4}\right\},\left\{u_{2}, u_{5}\right\},\left\{u_{1}, u_{2}, u_{5}\right\},\left\{u_{2}, u_{3}, u_{4}\right\},\left\{u_{2}, u_{3}, u_{5}\right\},\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\},\left\{u_{1}, u_{2}, u_{3}, u_{5}\right\}\right.$, $\left.\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\},\left\{u_{1}, u_{3}, u_{4}, u_{5}\right\},\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}\right\}$.

Let $f: G_{1} \rightarrow G_{2}$ and $g: G_{1} \rightarrow G_{2}$ such that
$f\left(v_{1}\right)=u_{2}, f\left(v_{2}\right)=u_{5}, f\left(v_{3}\right)=u_{3}, f\left(v_{4}\right)=u_{1}, f\left(v_{5}\right)=u_{5} \operatorname{and} g\left(v_{1}\right)=u_{4}, g\left(v_{2}\right)=u_{3}, g\left(v_{3}\right)=u_{1}, g\left(v_{4}\right)=u_{5}, g\left(v_{5}\right)=u_{2}$.
Accordingly,the function f is m-continuous since the inverse image of each m-open graph in G_{2} is m-open $\operatorname{in} G_{1}$. But the function g is not m-continuous becauseg ${ }^{-1}\left(\left\{u_{1}\right\}\right)=\left\{u_{3}\right\}$ and $\left\{u_{3}\right\}$ is not m-open in G_{1}.

Some properties of m-continuous functions are investigated in the following theorem
Theorem 5.3.Let f be a function from an M-space $\left(G_{1}, \xi_{m_{1}}\right)$ into an M-space $\left(G_{2}, \xi_{m_{2}}\right)$, then the following statements are equivalent:
(a) f is m-continuous,
(b) The inverse image of each m-closed graph in G_{2} is m-closed in G_{1},
(c) $C l_{m}\left(f^{-1}(V(K))\right) \subseteq f^{-1}\left(C l_{m}(V(K))\right)$ for all $K \subseteq G_{2}$,
(d) $f\left(C l_{m}(V(H))\right) \subseteq C l_{m}\left(f(V(H))\right.$ for all $H \subseteq G_{1}$,
(e) For each $v \in V(G)$ and each m-open graph $K \subseteq G_{2}$ Containing $f(v)$,there exists an m-open graph $H \subseteq G_{1}$ containing v such that $f(V(H)) \subseteq V(K)$,
(f) $f\left([V(H)]_{m}^{\prime}\right) \subseteq C l_{m}(f(V(H)))$ for all $H \subseteq G_{1}$,
(g) $f^{-1}\left(\operatorname{Int}_{m}(V(K))\right) \subseteq \operatorname{Int}_{m}\left(f^{-1}(V(K))\right)$ for all $K \subseteq G_{2}$ and
(h) $B d_{m}\left(f^{-1}(V(K))\right) \subseteq f^{-1}\left(B d_{m}(V(K))\right)$ for all $K \subseteq G_{2}$.

Proof.(a) \Rightarrow (b). Let $F \subseteq G_{2}$ be anm-closed graph, then $\left[V\left(G_{2}\right)-V(F)\right]$ is m-open in G_{2}. Since f is m-continuous, then $f^{-1}\left(V\left(G_{2}\right)-V(F)\right)=f^{-1}\left(V\left(G_{2}\right)\right)-f^{-1}(V(F))=V\left(G_{1}\right)-f^{-1}(V(F))$ is m-open in G_{1} and hence $f^{-1}(V(F))$ is m-closed in G_{1}.
(b) $\Rightarrow(\mathrm{c})$. Let $K \subseteq G_{2}$, then $C l_{m}(V(K))$ is m-closed in G_{2} and since $V(K) \subseteq C l_{m}(V(K))$, thus $f^{-1}(V(K)) \subseteq f^{-1}\left(C l_{m}(V(K))\right)$. But, by(b) $f^{-1}\left(C l_{m}(V(K))\right)$ is m-closed in G_{1} which containing $f^{-1}(V(K))$ andconsequently $C l_{m}\left(f^{-1}(V(K))\right) \subseteq f^{-1}\left(C l_{m}(V(K))\right)$.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$. Let $H \subseteq G_{1}$, then $f(H) \subseteq G_{2}$ and so by (c), we have $C l_{m}\left(f^{-1}(f(V(H))) \subseteq f^{-1}\left(C l_{m}(f(V(H)))\right.\right.$. Since $V(H) \subseteq f^{-1}(f(V(H))) \quad$ then $\quad C l_{m}(V(H)) \subseteq C l_{m}\left(f^{-1}(f(V(H))) \quad\right.$ and \quad hence $\quad C l_{m}(V(H)) \subseteq f^{-1}\left(C l_{m}(f(V(H)))\right.$. Therefore $f\left(C l_{m}(V(H))\right) \subseteq f\left(f^{-1}\left(C l_{m}(f(V(H)))\right) \subseteq C l_{m}(f(V(H)))\right.$. That is $f\left(C l_{m}(V(H))\right) \subseteq C l_{m}(f(V(H)))$.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$. Let $K \subseteq G_{2}$ be an m-open graph, then $F=\left(G_{2}-K\right)$ is m-closed graph in G_{2} and so $f^{-1}(V(F)) \subseteq V\left(G_{1}\right)$. By (d) we have $f\left(C l_{m}\left(f^{-1}(V(F))\right) \subseteq C l_{m}\left(f\left(f^{-1}(V(F))\right)\right.\right.$. Since $f\left(f^{-1}(V(F))\right) \subseteq V(F)$ then $C l_{m}\left(f\left(f^{-1}(V(F))\right) \subseteq C l_{m}(V(F))=V(F)\right.$ and so $f\left(C l_{m}\left(f^{-1}(V(F)) \subseteq V(F) \quad\right.\right.$ implies $\quad f^{-1}\left(f\left(C l_{m}\left(f^{-1}(V(F))\right)\right) \subseteq \quad f^{-1}(V(F))\right.$.But $\quad C l_{m}\left(f^{-1}(V(F))\right) \subseteq f^{-1}\left(f\left(C l_{m}\left(f^{-1}(V(F))\right)\right) \quad\right.$ and \quad so $C l_{m}\left(f^{-1}(V(F)) \subseteq f^{-1}(V(F))\right.$ and hence $C l_{m}\left(f^{-1}(V(F))\right)=f^{-1}(V(F))$. Therefore $f^{-1}(V(F))$ in m-closed in G_{1}. Because $f^{-1}(V(F))=$ $f^{-1}\left(V\left(G_{2}\right)-V(K)\right)=V\left(G_{1}\right) f^{-1}(V(K))$ then $G_{1}-f^{-1}(K)$ is m-closed in G_{1} and then $f^{-1}(K)$ is m-open in G_{1}.
(a) $\Rightarrow(\mathrm{e})$. Let $v \in V\left(G_{1}\right)$ and $K \subseteq G_{2}$ be an m-open graph containing $f(v)$. Then, by (a), $H=f^{-1}(K)$ is an m-open graph in G_{1} which containing v and hence $f(H)=f\left(f^{-1}(K)\right) \subseteq K$. i.e., $f(H) \subseteq K$.
(e) $\Rightarrow\left(\right.$ a). Let $K \subseteq G_{2}$ be an m-open graph and $f(v) \in V(K)$, then $v \in f^{-1}(V(K))$. By (e), there exists an m-open graph $H \subseteq G_{1}$ containing v such that $f\left(H_{v}\right) \subseteq K$ which implies $v \in V\left(H_{v}\right) \subseteq f^{-1}\left(f\left(H_{v}\right)\right) \subseteq f^{-1}(V(K))$. Thus $\{v\} \subseteq V\left(H_{v}\right) \subseteq f^{-1}(V(K))$ and hence $\mathrm{U}_{v \in f^{-1}(V(K))}\{v\} \subseteq \mathrm{U}_{v \in f^{-1}(V(K))} V\left(H_{v}\right) \subseteq f^{-1}(V(K))$. But $f^{-1}(V(K))=\mathrm{U}_{v \in f^{-1}(V(K))}\{v\}$ and so $f^{-1}(V(K))=\bigcup_{v \in f^{-1}(V(K))} V\left(H_{v}\right)$. Therefore $f^{-1}(V(K))$ is an m-open graph in G_{1} because it is a union of m-open graphs and hence f is continuous.
$(\mathrm{d}) \Rightarrow(\mathrm{f})$. Let $H \subseteq G_{1}$. Since $[V(H)]_{m}^{`} \subseteq C l_{m}(V(H))$ and by (d) we have $f\left([V(H)]_{m}^{\prime}\right) \subseteq f\left(C l_{m}(V(H))\right) \subseteq C l_{m}(f(V(H)))$. So $f\left([V(H)]_{m}^{\prime}\right) \subseteq C l_{m}(f(V(H)))$.
$(\mathrm{f}) \Rightarrow(\mathrm{d})$. Let $K \subseteq G_{2}$ be an m-closed graph, then $V(K)=C l_{m}(V(K))$ and thus $f^{-1}(V(K))=f^{-1}\left(C l_{m}(V(K))\right)$. Since $f^{-1}(V(K)) \subseteq V\left(G_{1}\right)$, then by $(\mathrm{f}), f\left(\left[f^{-1}(V(K))\right]_{m}\right) \subseteq C l_{m}\left(f\left(f^{-1}(V(K))\right)\right) \subseteq C l_{m}(V(K))=V(K)$, i.e., $f\left(\left[f^{-1}(V(K))\right]_{m}^{\prime}\right) \subseteq V(K)$ implies $[f$ $\left.{ }^{-1}(V(K))\right]_{m}^{\prime} \subseteq f^{-1}\left(f\left(\left[f^{-1}(V(K))\right]_{m}^{\prime}\right) \subseteq f^{-1}(V(K))\right.$ and so $\left[f^{-1}(V(K))\right]_{m} \subseteq f^{-1}(V(K))$. Hence $f^{-1}(V(K))$ is m-closed graph in G_{1}.
(a) $\Leftrightarrow(\mathrm{g})$. Let $K \subseteq G_{2}$. Then $\operatorname{Int} t_{m}(V(K)) \subseteq V(K)$ and so $f^{-1}\left(\operatorname{Int}_{m}(V(K)) \subseteq f^{-1}(V(K))\right.$. Since $\operatorname{Int} t_{m}(V(K))$ is m-open in G_{2} and fis m-continuous, thenf $f^{-1}\left(\operatorname{Int}_{m}(V(K))\right)$ is m-open in G_{1}. Now $f^{-1}\left(\operatorname{Int}_{m}(V(K))\right)$ is m-open contained in $f^{-1}(V(K))$ so $f^{-1}\left(\operatorname{Int}_{m}(V(K))\right) \subseteq \operatorname{Int}_{m}\left(f^{-1}(V(K))\right)$. Conversely, suppose that K is an m-open graph in G_{2} then $V(K)=\operatorname{Int}_{m}(V(K))$ and so $f^{-1}(V(K))=f^{-1}\left(\operatorname{Int}_{m}(V(K))\right)$. By $(\mathrm{g}) f^{-1}(V(K))=f^{-1}\left(\operatorname{Int}_{m}(V(K))\right) \subseteq \operatorname{Int}_{m}\left(f^{-1}(V(K))\right) \subseteq f^{-1}(V(K))$ and hence $f^{-1}(V(K))$ $=\operatorname{Int}_{m}\left(f^{-1}(V(K))\right)$. Consequently, $f^{-1}(V(K))$ is m-open in G_{1} and thus f is m-continuous.
$(\mathrm{a}) \Longrightarrow(\mathrm{h})$. Suppose that f is m-continuous and $K \subseteq G_{2}$, then $C l_{m}\left(f^{-1}(V(K))\right) \subseteq f^{-1}\left(C l_{m}(V(K))\right.$ and $\operatorname{Int}_{m}\left(f^{-1}(V(K))\right) \supseteq$ $f^{-1}\left(\operatorname{Int}_{m}(V(K))\right)$. So $\left[f^{-1}(V(K))\right]_{m}^{b}=\left[C l_{m}\left(f^{-1}(V(K))\right)-\operatorname{Int}_{m}\left(f^{-1}(V(K))\right)\right] \subseteq\left[f^{-1}\left(C l_{m}(V(K))\right)-f^{-1}\left(\operatorname{Int}_{m}(V(K))\right)\right]=\left[f^{-1}\left(C l_{m}(V(K))\right)\right.$ $\left.-\operatorname{Int}_{m}(V(K))\right]=f^{-1}\left([V(K)]_{m}^{b}\right)$. Accordingly, $\left[f^{-1}(V(K))\right]_{m}^{b}=f^{-1}\left([V(K)]_{m}^{b}\right)$.
$(\mathrm{h}) \Longrightarrow(\mathrm{b})$. Let K be an m-closed graph in G_{2}, then $C l_{m}(V(K))=V(K)$ and so $f^{-1}\left(C l_{m}(V(K))\right)=f^{-1}(V(K))$. Since $[V(K)]_{m}^{b} \subseteq C l_{m}(V(K))$ and by (h) we have $\left[f^{-1}(V(K))\right]_{m}^{b} \subseteq f^{-1}\left([V(K)]_{m}^{b}\right) \subseteq f^{-1}\left(C l_{m}(V(K))\right)=f^{-1}(V(K))$, implies $\left[f^{-1}(V(K))\right]_{m}^{b} \subseteq f^{-1}(V(K))$. But $\operatorname{Int}_{m}\left(f^{-1}(V(K))\right) \subseteq f^{-1}(V(K))$ and hence $\left[f^{-1}(V(K))\right]_{m}^{b} \cup I n t_{m}\left(f^{-1}(V(K))\right) \subseteq f^{-1}(V(K))$,implies $C l_{m}\left(f^{-1}(V(K)) \subseteq f^{-1}\left((V(K))\right.\right.$, implies $C l_{m}\left(f^{-1}(V(K))\right)=f^{-1}(V(K))$. Therefore $f^{-1}(V(K))$ is m-closed in G_{1}.

Remark 5.4.Let $\left(G_{1}, \xi_{m}\right)$ and $\left(G_{2}, \zeta_{m}\right)$ be M-space and $f: G_{1} \rightarrow G_{2}$, then the following statements are not necessarily equivalent:
(a) fis m-continuous.
(b) For each $v \in V(G)$ and each mixed degree $M \subseteq G_{2}$ of $f(v)$, there exists a mixed degree $N \subseteq G_{1}$ of v such that $f(N) \subseteq M$.

The next example illustrates Remark (5.4),

Example 5.5.

According to Example (5.2), let $v=v_{1} \in V\left(G_{1}\right)$ and $M=\left\{u_{3}, u_{4}\right\} \subseteq V\left(G_{2}\right)$ which is a mixed degree of $f(v)=f\left(v_{1}\right)=$ u_{2}. Obviously, there is no mixed degree $N \subseteq V\left(G_{1}\right)$ of such that $f(N) \subseteq M=\left\{u_{3}, u_{4}\right\}$.

Theorem 5.6.Let $\left(G_{1}, \xi_{m}\right)$ and $\left(G_{2}, \zeta_{m}\right)$ be two M-spaces and $f: G_{1} \rightarrow G_{2}$ be an m-continuous function,then $f_{H}: H$ $\rightarrow G_{2}$ is an m-continuous where $H \subseteq G_{1}$ is an M-subspace and f_{H} is the restriction offto H.

Proof. Suppose that K is an m-open graph in G_{2}, i.e. $K \in \Omega_{\zeta m}$. Since f is m-continuous then $f^{-1}(K) \in \Omega_{\xi n}$ and so H $\cap f^{-1}(K) \in \Omega_{\xi m}^{H}$. But $f_{H}^{-1}(W)=H \cap f^{-1}(W)$ for all $W \subseteq G_{2}$ and thus $f_{H}^{-1}(K)=H \cap f^{-1}(K)$. Therefor $f_{H}^{-1}(K) \in \Omega_{\xi m}^{H}$ and hence f_{H} is m-continuous.

Theorem 5.7.Let $\left(G_{1}, \xi_{m}\right),\left(G_{2}, \zeta_{m}\right)$ and $\left(G_{3}, \eta_{m}\right)$ be M-spaces. If $f: G_{1} \rightarrow G_{2}$ and $\mathrm{g}: G_{2} \rightarrow G_{3}$ are m-continuous functions, then $g \circ f: G_{1} \longrightarrow G_{3}$ is also m-continuous.

Proof. Let H be an m-open graph in W. Because g is m-continuous thus $g^{-1}(H)$ is m-open in G_{2} and since f is m continuous then $f^{-1}\left(g^{-1}(H)\right)$ is m-open in G_{1}. But $(g \circ f)^{-1}(H)=f^{-1}\left(g^{-1}(H)\right.$), so $(g \circ f)^{-1}(H)$ is m-open in G_{1}. Consequently, $g \circ$ f is m-continuous.

Definition 5.8.Let $\left(G_{1}, \xi_{m}\right)$ and $\left(G_{2}, \zeta_{m}\right)$ be two M-spaces.A functionffrom G_{1} into G_{2} is said to be m-open (m closed) if the image of each m-open (m-closed) graph in G_{1} is m-open (m-closed) in G_{2}.

In general,functions which are m-open need not be m-closed and vice versa as shown in the following example.
Example 5.9.

$$
\operatorname{Let} G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right): V\left(G_{1}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, E\left(G_{1}\right)=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{4}\right),\left(v_{2}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{3}\right),\left(v_{4}, v_{5}\right),\left(v_{5}, v_{2}\right),\right.
$$

$\left.\left(v_{5}, v_{5}\right)\right\}$.

Figure 5.3: Graph \boldsymbol{G}_{1} given in Example 5.9

Hence, we get
$\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{2}, v_{4}\right\},\left\{v_{3}\right\}\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{2}, v_{3}, v_{4}\right\},\left\{v_{1}, v_{2}, v_{5}\right\}\right\}, \xi_{m}\left(v_{3}\right)=\left\{\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{4}\right\}\right\}$,
$\xi_{m}\left(v_{4}\right)=\left\{\left\{v_{3}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}\right\}\right\}$ and $\xi_{m}\left(v_{5}\right)=\left\{\left\{v_{2}, v_{5}\right\},\left\{v_{4}, v_{5}\right\}\right\}$.
So, the families of m-open graphs and m-closed graphs of the M-space $\left(G_{1}, \xi_{m}\right)$ are given respectively by
$\mathscr{F}_{\underline{s} m}=\left\{V\left(G_{1}\right), \phi,\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{5}\right\}\right\}$.
$\Omega_{\xi[m}=\left\{V\left(G_{1}\right), \phi,\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}\right\}$.
Also,
let $\quad G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right): V\left(G_{2}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$, $E\left(G_{2}\right)=\left\{\left(u_{1}, u_{1}\right),\left(u_{1}, u_{5}\right),\left(u_{2}, u_{3}\right),\left(u_{2}, u_{4}\right),\left(u_{3}, u_{1}\right),\left(u_{3}, u_{3}\right),\left(u_{5}, u_{2}\right),\left(u_{5}, u_{4}\right),\left(u_{5}, u_{5}\right)\right\}$

Figure 5.4: Graph G_{2} given in Example 5.9
Thus, ζ_{m} is defined by

$$
\zeta_{m}\left(u_{1}\right)=\left\{\left\{u_{1}, u_{5}\right\},\left\{u_{1}, u_{3}\right\}\right\}, \zeta_{m}\left(u_{2}\right)=\left\{\left\{u_{3}, u_{4}\right\},\left\{u_{5}\right\}\right\}, \zeta_{m}\left(u_{3}\right)=\left\{\left\{u_{1}, u_{3}\right\},\left\{u_{2}, u_{3}\right\}\right\}, \zeta_{m}\left(u_{4}\right)=\left\{\phi,\left\{u_{2}, u_{5}\right\}\right\}
$$

and $\zeta_{m}\left(u_{5}\right)=\left\{\left\{u_{2}, u_{4}, u_{5}\right\},\left\{u_{1}, u_{5}\right\}\right\}$.

Consequently, the families of m-open graphs and m-closed graphs of the M-space $\left(G_{2}, \zeta_{m}\right)$ are given respectively by
$\mathscr{F}_{\zeta m}=\left\{V\left(G_{2}\right), \phi,\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{4}\right\},\left\{u_{5}\right\},\left\{u_{1}, u_{3}\right\},\left\{u_{1}, u_{5}\right\},\left\{u_{2}, u_{3}\right\},\left\{u_{2}, u_{4}\right\},\left\{u_{2}, u_{5}\right\},\left\{u_{3}, u_{4}\right\},\left\{u_{2}, u_{3}, u_{4}\right\},\left\{u_{2}, u_{4}, u_{5}\right\},\{\right.$ $\left.\left.u_{1}, u_{2}, u_{3}, u_{5}\right\}\right\}$.
$\Omega_{\zeta m}=\left\{V\left(G_{2}\right), \phi,\left\{u_{4}\right\},\left\{u_{1}, u_{3}\right\},\left\{u_{1}, u_{5}\right\},\left\{u_{1}, u_{2}, u_{5}\right\},\left\{u_{1}, u_{3}, u_{4}\right\},\left\{u_{1}, u_{3}, u_{5}\right\},\left\{u_{1}, u_{4}, u_{5}\right\},\left\{u_{2}, u_{3}, u_{4}\right\},\left\{u_{2}, u_{4}\right.\right.$, $\left.\left.u_{5}\right\},\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\},\left\{u_{1}, u_{2}, u_{3}, u_{5}\right\},\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\},\left\{u_{1}, u_{3}, u_{4}, u_{5}\right\},\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}\right\}$.

Let $f: G_{1} \rightarrow G_{2}$ and $g: G_{1} \rightarrow G_{2}$ and $h: G_{1} \rightarrow G_{2}$ such that
$f\left(v_{1}\right)=u_{2}, f\left(v_{2}\right)=u_{2}, f\left(v_{3}\right)=u_{3}, f\left(v_{4}\right)=u_{4}, f\left(v_{5}\right)=u_{5}$,
$g\left(v_{1}\right)=u_{2}, g\left(v_{2}\right)=u_{4}, g\left(v_{3}\right)=u_{2}, g\left(v_{4}\right)=u_{4}, g\left(v_{5}\right)=u_{5}$ and
$h\left(v_{1}\right)=u_{1}, h\left(v_{1}\right)=u_{2}, h\left(v_{3}\right)=u_{1}, h\left(v_{4}\right)=u_{5}, h\left(v_{5}\right)=u_{3}$.
Accordingly, the function f is m-open but not m-closed since $f\left(G_{1}\right)=\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$ which is not m-closed graph in G_{2}. Moreover, f is not m-continuous since $f^{-1}\left(\left\{u_{4}\right\}\right)=\left\{v_{4}\right\}$ and $\left\{v_{4}\right\}$ is not m-open graph in G_{1}.On the other hand, the function g is m-closed but not m-open since $g\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)=\left\{u_{2}, u_{4}\right\}$ which is not m-open graph in G_{2}. Finally, the function h is m-open and m-closed.

Example 5.10.

According to Example (5.2), the function f is m-continuous but not m-open since $f\left(\left\{v_{1}, v_{3}\right\}\right)=\left\{u_{1}, u_{3}\right\}$ which is not m-open graph in G_{2}.

Theorem 5.11.Let f be a function from the M-space $\left(G_{1}, \xi_{n}\right)$ into the M-space $\left(G_{2}, \zeta_{m}\right)$, then the following statements are equivalent:
(a) f is m-open,
(b) $f\left(\operatorname{Int}_{m}(V(H)) \subseteq \operatorname{Int}_{m}(f(V(H)))\right.$ for all $H \subseteq G_{1}$ and
(c) For each $v \in V(G)$ and each m-open graph $O \subseteq G_{1}$ containing v, there exists an m-open graph $K \subseteq G_{2}$ containing $f(v)$ such that $K \subseteq f(O)$.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Let $H \subseteq G_{1}$. Since $\operatorname{Int}_{m}(V(H)) \subseteq V(H)$ then $f\left(\operatorname{Int}_{m}(V(H)) \subseteq f(V(H))\right.$. But, $\operatorname{Int}_{m}(V(H))$ is m-open graph in G_{1} and f is m-open function. So, by (a), $f\left(\operatorname{Int}_{m}(V(H))\right.$) is m-open in G_{2} which contained in $f(V(H))$. Therefore, $f\left(\operatorname{Int}_{m}(V(H))\right) \subseteq \operatorname{Int}_{m}(f(V(K)))$.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. Suppose that H is an m-open graph in G_{1}, then $V(H)=\operatorname{Int}_{m}(V(H))$ and so $f(V(H))=f\left(\operatorname{Int} t_{m}(V(H))\right)$. By (b), $f\left(\operatorname{Int}_{m}(V(H))\right) \subseteq \operatorname{Int}_{m}\left(f(V(H))\right.$, then $f(V(H)) \subseteq \operatorname{Int}_{m}(f(V(H)))$. But $\operatorname{Int}_{m}(f(V(H)) \subseteq f(V(H))$ and thus $f(V(H))=$ $\operatorname{Int}_{m}(f(V(H)))$. Accordingly $f(H)$ is m-open graph in G_{2} and hence f is m-open function.
(a) \Rightarrow (c). Let $v \in V\left(G_{1}\right)$ and $H \subseteq G_{1}$ be an m-open graph such that $v \in V(H)$. Then, by (a), $K=f(H)$ is an m-open graph in G_{2} which containing $f(v)$ and hence $K \subseteq f(H)$.
(c) \Rightarrow (a). Let $H \subseteq G_{1}$ be an m-open graph and $v \in V(H)$, then $u=f(v) \in f(V(H))$. By (c), there exists an m-open graph $K_{u} \subseteq G_{2}$ containing u such that $K_{u} \subseteq f(V(H))$ which implies $u \in V\left(K_{u}\right) \subseteq f(V(H))$.Thus $\{u\} \subseteq K_{v} \subseteq f(V(H))$ and hence $\mathrm{U}_{u \in f(V(H))}\{u\} \subseteq \mathrm{U}_{u} \in f(V(H)) K_{u} \subseteq f(V(H))$.But $f(V(H))=\bigcup_{u \in f(V(H))}\{u\}$ and so $f(V(H))=\bigcup_{u \in f(V(H))} K_{u}$. Therefore, $f(V(H))$ is an m-open graph in G_{2} because it is a union of m-open graphs and hence f is m-open.

Remark 5.12.Let $\left(G, \xi_{m}\right)$ and $\left(G_{2}, \zeta_{m}\right)$ be two M-space and $f: G_{1} \rightarrow G_{2}$, then the following statements are not necessarily equivalent:
(a) f is m-open.
(b) For each $v \in V(G)$ and each mixed degree $M \subseteq V\left(G_{1}\right)$ of v, there exists a mixed degree $N \subseteq V\left(G_{2}\right)$ of $f(v)$ such that $N \subseteq f(M)$.

The following example illustrates Remark (5.12),

Example 5.13.

According to Example (5.9), let $v=v_{3} \in V\left(G_{1}\right)$ and $N=\left\{v_{1}, v_{4}\right\} \subseteq V\left(G_{1}\right)$ which is a mixed degree system of v_{3}. Obviously, there is no mixed degree system $M \subseteq V\left(G_{2}\right)$ of $f\left(v_{3}\right)=u_{3}$ such that $M \subseteq f(N)=\left\{u_{2}, u_{4}\right\}$.

Theorem 5.14. Letfbe a function from the M-space $\left(G_{1}, \xi_{m}\right)$ into the M-space $\left(G_{2}, \zeta_{m}\right)$,then f is m-closed if and only if $C l_{m}(f(V(H))) \subseteq f\left(C l_{m}(V(H))\right)$ for all $H \subseteq G_{1}$.

Proof. Suppose that f is m-closed and $H \subseteq G_{1}$. But $V(H) \subseteq C l_{m}(V(H))$ which implies $f(V(H)) \subseteq f\left(C l_{m}(V(H))\right)$ and so $C l_{m}(f(V(H))) \subseteq C l_{m}\left(f\left(C l_{m}(V(H))\right)\right)$. Since $C l_{m}(V(H))$ is m-closed in G_{1} and f is m-closed, then $f\left(C l_{m}(V(H))\right)$ is m-closed in G_{2}. Thus $f\left(C l_{m}(V(H))\right)=C l_{m}\left(f\left(C l_{m}(V(H))\right)\right.$ and hence $C l_{m}\left(f(V(H)) \subseteq f\left(C l_{m}(V(H))\right)\right.$. Conversely, let H be an m-closed graph in G_{1}, then $V(H)=$
$C l_{m}(V(H))$ and so $f(V(H))=f\left(C l_{m}(V(H))\right)$. Since $C l_{m}(f(V(H))) \subseteq f\left(C l_{m}(V(H))\right)$ thus $C l_{m}(f(V(H))) \subseteq f(V(H))$. But $f(V(H)) \subseteq C l_{m}(f(V(H)))$ then $f(V(H))=C l_{m}(f(V(H)))$ and hence $f(V(H))$ is m-closed in G_{2}. Consequently, f is m-closed function.

Definition 5.15.Let $\left(G_{1}, \xi_{m}\right)$ and $\left(G_{2}, \zeta_{m}\right)$ be two M-space. A function ffrom G_{1} into G_{2} is said to be an m-homeomorphism if
(a) f is bijective.
(b) f and f^{-1} are m-continuous.

The two M-spaces G_{1} and G_{2} are called m-homeomorphic.

Example 5.16.

Let $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right): V\left(G_{1}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}, E\left(G_{1}\right)=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{3}\right)\right\}$

Figure 5.5: Graph G_{1} given in Example 5.16
Then, ξ_{m} is given by
$\xi_{m}\left(v_{1}\right)=\left\{\left\{v_{2}\right\}, \phi\right\}, \xi_{m}\left(v_{2}\right)=\left\{\left\{v_{3}\right\},\left\{v_{1}\right\}\right\}$ and $\xi_{m}\left(v_{3}\right)=\left\{\left\{v_{3}\right\},\left\{v_{2}, v_{3}\right\}\right\}$.
$\Omega_{\xi m}=\left\{V\left(G_{1}\right), \phi,\left\{v_{1}\right\},\left\{v_{3}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}\right\}$.
Also, let $G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right): V\left(G_{2}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}, E\left(G_{2}\right)=\left\{\left(u_{1}, u_{1}\right),\left(u_{2}, u_{1}\right),\left(u_{3}, u_{2}\right),\left(u_{3}, u_{3}\right)\right\}$.

Figure 5.6: Graph G_{2} given in Example 5.17
Thus, ζ_{m} is given by
$\zeta_{m}\left(u_{1}\right)=\left\{\left\{u_{1}\right\},\left\{u_{1}, u_{2}\right\}\right\}, \zeta_{m}\left(u_{2}\right)=\left\{\left\{u_{1}\right\},\left\{u_{3}\right\}\right\}$ and $\zeta_{m}\left(u_{3}\right)=\left\{\left\{u_{2}, u_{3}\right\},\left\{u_{3}\right\}\right\}$.
$\Omega_{\zeta m}=\left\{V\left(G_{2}\right), \phi,\left\{u_{1}\right\},\left\{u_{3}\right\},\left\{u_{1}, u_{2}\right\},\left\{u_{1}, u_{3}\right\},\left\{u_{2}, u_{3}\right\}\right\}$.
Let $f: G_{1} \longrightarrow G_{2}$ and $g: G_{1} \longrightarrow G_{2}$
$f\left(v_{1}\right)=u_{3}, f\left(v_{2}\right)=u_{2}, f\left(v_{3}\right)=u_{1}$ and
$g\left(v_{1}\right)=u_{2}, g\left(v_{2}\right)=u_{1}, g\left(v_{3}\right)=u_{3}$.
Accordingly, the function f is m-homeomorphism since f is bijective. Also, f and f^{-1} are m-continuous. But the function g is not m-homeomorphism since $g\left(\left\{v_{1}\right\}\right)=\left\{u_{2}\right\}$ and $\left\{u_{2}\right\}$ is not m-open graph in G_{2} which implies g^{-1} is not m-continuous. Furthermore, $g^{-1}\left(\left\{u_{1}\right\}\right)=\left\{v_{1}\right\}$ and $\left\{v_{1}\right\}$ is not m-open graph in G_{1} which implies g is not m-continuous.

Theorem 5.17.Let f be a bijective function from the M-space $\left(G_{1}, \xi_{m}\right)$ onto the M-space $\left(G_{2}, \zeta_{m}\right)$, then the following statements are equivalent:
(a) f is an m-homeomorphism,
(b) f is m-continuous and m-open,
(c) f is m-continuous and m-closed and
(d) $C l_{m}\left(f(V(H))=f\left(C l_{m}(V(H))\right)\right.$ for all $H \subseteq G_{1}$.

Proof: The proof is obvious.

REFERENCES

1. Abo Khadra, A. M. Kozae and M. Shokry, Topology generated by graphs, Jour. of Mathematics \& Computer Sciences, Vol. 20 (1), (2009), pp.49-57.
2. C. Adams and R. Franzosa, Introduction to topology: pure and Applied, Indian edition published, 2009.
3. R.B.J.T. Allenby, Alan Slomson, How to Count: An Introduction to Combinatorics, Second Edition, (2011), pp. 154.
4. L. W. Beineke and R. J. Wilson, Topics in topological graph theory, Cambridge University Press, 2009.
5. B. Davvaz, 2008, a short on algebraic Trough sets. Inform. Sci., 178: 3247-3252. DOI: 10.1016/j.ins.2008.03.014.
6. V. L. Fotea, 2008, the lower and upper approximations in a hyper group. Inform. Sci., 178: 3605-3615. DOI: 10.1016/j.ins.2008.05.009.
7. G.P. Gavrilov, A.A. Sapozhenko, Problems and Exercises in Discrete Mathematics, (2o13), pp. 95.
8. S. Mashhour, A. A.Allam, F. S. Mahmoud and F. H. Khedr, Onsupratopological spaces, Indian J. Pure and Appl. Math. no.4, 18(1987), 322-329.
9. M. Shokry, Approximations structures generated by trees vertices, International Journal of Engineering Science and Technology (IJEST), Vol. 4 (2), February (2012), pp.406-418.
10. M. Shokry, Closure concepts generated by directed trees; Journal of Mathematics \& Computer Sciences, Vol. 21 (1), (2010), pp.45-51.
11. R. J. Wilson, Introduction to Graph Theory, Fourth, 1996.
12. S. E. Zhao, and C.C. Tsang, 2008, on fuzzy approximation operators in attribute reduction with fuzzy rough sets. Inform. Sci., 178: 3163-3176. DOI: 10. 1016/j.ins.2008.03.022.
13. S. Zhang, 2009, mining class-bridge rules based on rough sets. Expert Syst. Appl., 36: 6453-6460. DOI: 10.1016/j.eswa.2008.07.044.
